These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28647624)

  • 21. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior.
    Ruan C; Hu N; Ma Y; Li Y; Liu J; Zhang X; Pan H
    Sci Rep; 2017 Jul; 7(1):6794. PubMed ID: 28754984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of polyurethane under fatigue loading.
    Wiggins MJ; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2003 Jun; 65(4):524-35. PubMed ID: 12761843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility.
    Pereira IH; Ayres E; Patrício PS; Góes AM; Gomide VS; Junior EP; Oréfice RL
    Acta Biomater; 2010 Aug; 6(8):3056-66. PubMed ID: 20193783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.
    Christenson EM; Dadsetan M; Hiltner A
    J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):335-44. PubMed ID: 16767730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications.
    Singhal P; Small W; Cosgriff-Hernandez E; Maitland DJ; Wilson TS
    Acta Biomater; 2014 Jan; 10(1):67-76. PubMed ID: 24090987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shape Memory Behavior of Biocompatible Polyurethane Stereoelastomers Synthesized
    Hsu YH; Luong D; Asheghali D; Dove AP; Becker ML
    Biomacromolecules; 2022 Mar; 23(3):1205-1213. PubMed ID: 35044744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products.
    van Minnen B; Stegenga B; van Leeuwen MB; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2006 Feb; 76(2):377-85. PubMed ID: 16270347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.
    Xu C; Huang Y; Wu J; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20377-88. PubMed ID: 26312436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content.
    Meng Q; Hu J; Zhu Y
    J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradable polyurethanes: synthesis and applications in regenerative medicine.
    Guelcher SA
    Tissue Eng Part B Rev; 2008 Mar; 14(1):3-17. PubMed ID: 18454631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyurethane elastomer biostability.
    Stokes K; McVenes R; Anderson JM
    J Biomater Appl; 1995 Apr; 9(4):321-54. PubMed ID: 9309503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review: fabrication of porous polyurethane scaffolds.
    Janik H; Marzec M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers.
    Chien YC; Chuang WT; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads.
    Wiggins MJ; Wilkoff B; Anderson JM; Hiltner A
    J Biomed Mater Res; 2001 May; 58(3):302-7. PubMed ID: 11319745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autooxidative degradation of implanted polyether polyurethane devices.
    Stokes K; Coury A; Urbanski P
    J Biomater Appl; 1987 Apr; 1(4):411-48. PubMed ID: 3506953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.