These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28647814)

  • 1. The effects of variable practice on locomotor adaptation to a novel asymmetric gait.
    Hinkel-Lipsker JW; Hahn ME
    Exp Brain Res; 2017 Sep; 235(9):2829-2841. PubMed ID: 28647814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contextual interference during adaptation to asymmetric split-belt treadmill walking results in transfer of unique gait mechanics.
    Hinkel-Lipsker JW; Hahn ME
    Biol Open; 2017 Dec; 6(12):1919-1932. PubMed ID: 29175857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradual training reduces the challenge to lateral balance control during practice and subsequent performance of a novel locomotor task.
    Sawers A; Kelly VE; Kartin D; Hahn ME
    Gait Posture; 2013 Sep; 38(4):907-11. PubMed ID: 23706506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
    Krishnan C; Ranganathan R; Tetarbe M
    Gait Posture; 2017 Jul; 56():24-30. PubMed ID: 28482202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive control of dynamic balance in human gait on a split-belt treadmill.
    Buurke TJW; Lamoth CJC; Vervoort D; van der Woude LHV; den Otter R
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29773683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task.
    Sawers A; Hahn ME
    Hum Mov Sci; 2013 Aug; 32(4):605-17. PubMed ID: 24054898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.
    Donath L; Faude O; Bridenbaugh SA; Roth R; Soltermann M; Kressig RW; Zahner L
    J Aging Phys Act; 2014 Jul; 22(3):324-33. PubMed ID: 23881433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handrail Holding During Treadmill Walking Reduces Locomotor Learning in Able-Bodied Persons.
    Buurke TJW; Lamoth CJC; van der Woude LHV; den Otter R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1753-1759. PubMed ID: 31425041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning new gait patterns: Age-related differences in skill acquisition and interlimb transfer.
    Krishnan C; Washabaugh EP; Reid CE; Althoen MM; Ranganathan R
    Exp Gerontol; 2018 Oct; 111():45-52. PubMed ID: 29981399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between age and measures of balance, strength and gait: linear and non-linear analyses.
    El Haber N; Erbas B; Hill KD; Wark JD
    Clin Sci (Lond); 2008 Jun; 114(12):719-27. PubMed ID: 18092948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order.
    Stöckel T; Wang J
    Brain Cogn; 2011 Nov; 77(2):271-9. PubMed ID: 21889250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in balance coordination and transfer to an unlearned balance task after slackline training: a self-organizing map analysis.
    Serrien B; Hohenauer E; Clijsen R; Taube W; Baeyens JP; Küng U
    Exp Brain Res; 2017 Nov; 235(11):3427-3436. PubMed ID: 28831563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term retention of gait stability improvements.
    Bhatt T; Pai YC
    J Neurophysiol; 2005 Sep; 94(3):1971-9. PubMed ID: 15928059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling.
    MacLellan MJ; Qaderdan K; Koehestanie P; Duysens J; McFadyen BJ
    Hum Mov Sci; 2013 Feb; 32(1):79-90. PubMed ID: 23176813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait initiation in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Apr; 27(3):423-30. PubMed ID: 17624782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the balance-dexterity task as a concurrent bipedal task to investigate trunk control during dynamic balance.
    Rowley KM; Gordon J; Kulig K
    J Biomech; 2018 Aug; 77():211-217. PubMed ID: 30037579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associations between Muscle Strength Asymmetry and Impairments in Gait and Posture in Young Brain-Injured Patients.
    Drijkoningen D; Caeyenberghs K; Vander Linden C; Van Herpe K; Duysens J; Swinnen SP
    J Neurotrauma; 2015 Sep; 32(17):1324-32. PubMed ID: 25738975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.