These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28647896)

  • 1. Omics-based hybrid prediction in maize.
    Westhues M; Schrag TA; Heuer C; Thaller G; Utz HF; Schipprack W; Thiemann A; Seifert F; Ehret A; Schlereth A; Stitt M; Nikoloski Z; Willmitzer L; Schön CC; Scholten S; Melchinger AE
    Theor Appl Genet; 2017 Sep; 130(9):1927-1939. PubMed ID: 28647896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics-based prediction of hybrid performance in canola.
    Knoch D; Werner CR; Meyer RC; Riewe D; Abbadi A; Lücke S; Snowdon RJ; Altmann T
    Theor Appl Genet; 2021 Apr; 134(4):1147-1165. PubMed ID: 33523261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
    Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE
    Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genetic value prediction using incomplete omics data.
    Westhues M; Heuer C; Thaller G; Fernando R; Melchinger AE
    Theor Appl Genet; 2019 Apr; 132(4):1211-1222. PubMed ID: 30656353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize.
    Ramstein GP; Larsson SJ; Cook JP; Edwards JW; Ersoz ES; Flint-Garcia S; Gardner CA; Holland JB; Lorenz AJ; McMullen MD; Millard MJ; Rocheford TR; Tuinstra MR; Bradbury PJ; Buckler ES; Romay MC
    Genetics; 2020 May; 215(1):215-230. PubMed ID: 32152047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mapping and prediction of flowering time and plant height in a maize Stiff Stalk MAGIC population.
    Michel KJ; Lima DC; Hundley H; Singan V; Yoshinaga Y; Daum C; Barry K; Broman KW; Robin Buell C; de Leon N; Kaeppler SM
    Genetics; 2022 May; 221(2):. PubMed ID: 35441688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.
    Yang J; Mezmouk S; Baumgarten A; Buckler ES; Guill KE; McMullen MD; Mumm RH; Ross-Ibarra J
    PLoS Genet; 2017 Sep; 13(9):e1007019. PubMed ID: 28953891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.).
    Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y
    BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines.
    Riedelsheimer C; Technow F; Melchinger AE
    BMC Genomics; 2012 Sep; 13():452. PubMed ID: 22947126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of genes enabling accurate prediction of hybrid performance from parents across environments and populations for gene-based breeding in maize.
    Zhang M; Liu YH; Wang Y; Sze SH; Scheuring CF; Qi X; Ekinci O; Pekar J; Murray SC; Zhang HB
    Plant Sci; 2022 Nov; 324():111424. PubMed ID: 35995113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic and metabolic prediction of complex heterotic traits in hybrid maize.
    Riedelsheimer C; Czedik-Eysenberg A; Grieder C; Lisec J; Technow F; Sulpice R; Altmann T; Stitt M; Willmitzer L; Melchinger AE
    Nat Genet; 2012 Jan; 44(2):217-20. PubMed ID: 22246502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations.
    Hu H; Campbell MT; Yeats TH; Zheng X; Runcie DE; Covarrubias-Pazaran G; Broeckling C; Yao L; Caffe-Treml M; Gutiérrez LA; Smith KP; Tanaka J; Hoekenga OA; Sorrells ME; Gore MA; Jannink JL
    Theor Appl Genet; 2021 Dec; 134(12):4043-4054. PubMed ID: 34643760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs.
    Seye AI; Bauland C; Charcosset A; Moreau L
    Theor Appl Genet; 2020 Jun; 133(6):1995-2010. PubMed ID: 32185420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding.
    Li C; Guan H; Jing X; Li Y; Wang B; Li Y; Liu X; Zhang D; Liu C; Xie X; Zhao H; Wang Y; Liu J; Zhang P; Hu G; Li G; Li S; Sun D; Wang X; Shi Y; Song Y; Jiao C; Ross-Ibarra J; Li Y; Wang T; Wang H
    Nat Plants; 2022 Jul; 8(7):750-763. PubMed ID: 35851624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data.
    Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM
    Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-dimensional multi-omics measured in controlled conditions are useful for maize platform and field trait predictions.
    Ali B; Huguenin-Bizot B; Laurent M; Chaumont F; Maistriaux LC; Nicolas S; Duborjal H; Welcker C; Tardieu F; Mary-Huard T; Moreau L; Charcosset A; Runcie D; Rincent R
    Theor Appl Genet; 2024 Jul; 137(7):175. PubMed ID: 38958724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize.
    Liu YH; Zhang M; Scheuring CF; Cilkiz M; Sze SH; Smith CW; Murray SC; Xu W; Zhang HB
    Plant Sci; 2022 Mar; 316():111153. PubMed ID: 35151437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (
    Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L
    Genetics; 2017 Nov; 207(3):1167-1180. PubMed ID: 28971957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.