BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28647905)

  • 1. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.
    Tatli O; Sogutmaz Ozdemir B; Dinler Doganay G
    Plant Mol Biol; 2017 Aug; 94(6):609-623. PubMed ID: 28647905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery.
    Bian Y; Deng X; Yan X; Zhou J; Yuan L; Yan Y
    Sci Rep; 2017 Apr; 7():46183. PubMed ID: 28387352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.
    Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM
    J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon.
    Yoon JS; Kim JY; Lee MB; Seo YW
    Plant Cell Rep; 2019 Sep; 38(9):1109-1125. PubMed ID: 31134348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.
    Bian YW; Lv DW; Cheng ZW; Gu AQ; Cao H; Yan YM
    J Proteomics; 2015 Oct; 128():388-402. PubMed ID: 26344133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon.
    Bayramov S; Guliyev N
    Plant Physiol Biochem; 2014 Aug; 81():61-6. PubMed ID: 24521715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.
    Lv DW; Subburaj S; Cao M; Yan X; Li X; Appels R; Sun DF; Ma W; Yan YM
    Mol Cell Proteomics; 2014 Feb; 13(2):632-52. PubMed ID: 24335353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response.
    Yuan LL; Zhang M; Yan X; Bian YW; Zhen SM; Yan YM
    Sci Rep; 2016 Oct; 6():35280. PubMed ID: 27748408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic shifts associated with drought-induced senescence in Brachypodium.
    Ahkami AH; Wang W; Wietsma TW; Winkler T; Lange I; Jansson C; Lange BM; McDowell NG
    Plant Sci; 2019 Dec; 289():110278. PubMed ID: 31623774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS.
    Budak H; Akpinar BA; Unver T; Turktas M
    Plant Mol Biol; 2013 Sep; 83(1-2):89-103. PubMed ID: 23443681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat.
    Peng Z; Wang M; Li F; Lv H; Li C; Xia G
    Mol Cell Proteomics; 2009 Dec; 8(12):2676-86. PubMed ID: 19734139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BdHD1, a histone deacetylase of
    Song J; Torrez A; Henry H; Tian L
    Plant Signal Behav; 2020 Aug; 15(8):1774715. PubMed ID: 32543955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves.
    Verelst W; Bertolini E; De Bodt S; Vandepoele K; Demeulenaere M; Pè ME; Inzé D
    Mol Plant; 2013 Mar; 6(2):311-22. PubMed ID: 23015761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of barley leaf proteome as affected by drought stress.
    Ashoub A; Beckhaus T; Berberich T; Karas M; Brüggemann W
    Planta; 2013 Mar; 237(3):771-81. PubMed ID: 23129216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific peroxidases differentiate Brachypodium distachyon accessions and are associated with drought tolerance traits.
    Luo N; Yu X; Nie G; Liu J; Jiang Y
    Ann Bot; 2016 Aug; 118(2):259-70. PubMed ID: 27325900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon.
    Bertolini E; Verelst W; Horner DS; Gianfranceschi L; Piccolo V; Inzé D; Pè ME; Mica E
    Mol Plant; 2013 Mar; 6(2):423-43. PubMed ID: 23264558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.
    Cheng L; Wang Y; He Q; Li H; Zhang X; Zhang F
    BMC Plant Biol; 2016 Aug; 16(1):188. PubMed ID: 27576435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation of drought response in Brachypodium distachyon.
    Luo N; Liu J; Yu X; Jiang Y
    Physiol Plant; 2011 Jan; 141(1):19-29. PubMed ID: 20875057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought-inducible changes in the histone modification H3K9ac are associated with drought-responsive gene expression in Brachypodium distachyon.
    Song J; Henry H; Tian L
    Plant Biol (Stuttg); 2020 May; 22(3):433-440. PubMed ID: 31628708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.