BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 28647906)

  • 1. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.
    Zimmers TA; Jiang Y; Wang M; Liang TW; Rupert JE; Au ED; Marino FE; Couch ME; Koniaris LG
    Basic Res Cardiol; 2017 Jul; 112(4):48. PubMed ID: 28647906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects?
    Harper SC; Brack A; MacDonnell S; Franti M; Olwin BB; Bailey BA; Rudnicki MA; Houser SR
    Circ Res; 2016 Apr; 118(7):1143-50; discussion 1150. PubMed ID: 27034276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supraphysiologic Administration of GDF11 Induces Cachexia in Part by Upregulating GDF15.
    Jones JE; Cadena SM; Gong C; Wang X; Chen Z; Wang SX; Vickers C; Chen H; Lach-Trifilieff E; Hadcock JR; Glass DJ
    Cell Rep; 2018 Feb; 22(6):1522-1530. PubMed ID: 29425507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supraphysiological levels of GDF11 induce striated muscle atrophy.
    Hammers DW; Merscham-Banda M; Hsiao JY; Engst S; Hartman JJ; Sweeney HL
    EMBO Mol Med; 2017 Apr; 9(4):531-544. PubMed ID: 28270449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice.
    Jin Q; Qiao C; Li J; Xiao B; Li J; Xiao X
    Skelet Muscle; 2019 May; 9(1):16. PubMed ID: 31133057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis.
    Egerman MA; Glass DJ
    Crit Rev Biochem Mol Biol; 2019 Apr; 54(2):174-183. PubMed ID: 31144559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GDF11 Decreases Pressure Overload-Induced Hypertrophy, but Can Cause Severe Cachexia and Premature Death.
    Harper SC; Johnson J; Borghetti G; Zhao H; Wang T; Wallner M; Kubo H; Feldsott EA; Yang Y; Joo Y; Gou X; Sabri AK; Gupta P; Myzithras M; Khalil A; Franti M; Houser SR
    Circ Res; 2018 Nov; 123(11):1220-1231. PubMed ID: 30571461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice.
    Rinaldi F; Zhang Y; Mondragon-Gonzalez R; Harvey J; Perlingeiro RCR
    Skelet Muscle; 2016; 6():21. PubMed ID: 27303621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy.
    Morvan F; Rondeau JM; Zou C; Minetti G; Scheufler C; Scharenberg M; Jacobi C; Brebbia P; Ritter V; Toussaint G; Koelbing C; Leber X; Schilb A; Witte F; Lehmann S; Koch E; Geisse S; Glass DJ; Lach-Trifilieff E
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12448-12453. PubMed ID: 29109273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Circulating GDF11 Is Unlikely Responsible for Age-Dependent Changes in Mouse Heart, Muscle, and Brain.
    Rodgers BD; Eldridge JA
    Endocrinology; 2015 Nov; 156(11):3885-8. PubMed ID: 26372181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury.
    Su HH; Liao JM; Wang YH; Chen KM; Lin CW; Lee IH; Li YJ; Huang JY; Tsai SK; Yen JC; Huang SS
    Basic Res Cardiol; 2019 Mar; 114(3):20. PubMed ID: 30900023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GDF11 does not rescue aging-related pathological hypertrophy.
    Smith SC; Zhang X; Zhang X; Gross P; Starosta T; Mohsin S; Franti M; Gupta P; Hayes D; Myzithras M; Kahn J; Tanner J; Weldon SM; Khalil A; Guo X; Sabri A; Chen X; MacDonnell S; Houser SR
    Circ Res; 2015 Nov; 117(11):926-32. PubMed ID: 26383970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiological levels of GDF11 activate Smad2/Smad3 signaling and induce muscle atrophy in human iPSC-derived myocytes.
    Honda M; Makino T; Zhao X; Matsuto M; Sakurai H; Takahashi Y; Shimizu M; Sato R; Yamauchi Y
    Am J Physiol Cell Physiol; 2022 Nov; 323(5):C1402-C1409. PubMed ID: 36094432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway.
    Masuzawa R; Takahashi K; Takano K; Nishino I; Sakai T; Endo T
    J Biochem; 2022 Jan; 171(1):109-122. PubMed ID: 34676394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal Systemic AAV-Mediated Gene Delivery of GDF11 Inhibits Skeletal Muscle Growth.
    Jin Q; Qiao C; Li J; Li J; Xiao X
    Mol Ther; 2018 Apr; 26(4):1109-1117. PubMed ID: 29503194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration.
    Rochette L; Zeller M; Cottin Y; Vergely C
    Pharmacol Ther; 2015 Dec; 156():26-33. PubMed ID: 26523637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration.
    Egerman MA; Cadena SM; Gilbert JA; Meyer A; Nelson HN; Swalley SE; Mallozzi C; Jacobi C; Jennings LL; Clay I; Laurent G; Ma S; Brachat S; Lach-Trifilieff E; Shavlakadze T; Trendelenburg AU; Brack AS; Glass DJ
    Cell Metab; 2015 Jul; 22(1):164-74. PubMed ID: 26001423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging.
    Fan X; Gaur U; Sun L; Yang D; Yang M
    Mech Ageing Dev; 2017 Jun; 164():108-112. PubMed ID: 28472635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells.
    Lu Q; Tu ML; Li CJ; Zhang L; Jiang TJ; Liu T; Luo XH
    Calcif Tissue Int; 2016 Nov; 99(5):500-509. PubMed ID: 27395058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.
    Walker RG; Poggioli T; Katsimpardi L; Buchanan SM; Oh J; Wattrus S; Heidecker B; Fong YW; Rubin LL; Ganz P; Thompson TB; Wagers AJ; Lee RT
    Circ Res; 2016 Apr; 118(7):1125-41; discussion 1142. PubMed ID: 27034275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.