BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28648060)

  • 1. Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots.
    Kroupa DM; Hughes BK; Miller EM; Moore DT; Anderson NC; Chernomordik BD; Nozik AJ; Beard MC
    J Am Chem Soc; 2017 Aug; 139(30):10382-10394. PubMed ID: 28648060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Type PbSe Quantum Dots via Post-Synthetic Indium Doping.
    Lu H; Carroll GM; Chen X; Amarasinghe DK; Neale NR; Miller EM; Sercel PC; Rabuffetti FA; Efros AL; Beard MC
    J Am Chem Soc; 2018 Oct; 140(42):13753-13763. PubMed ID: 30255707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile in situ Synthesis of Ag-Doped CdSe Supra-Quantum Dots and their Characterization.
    Lee SM; Lim H; Lee Y; Bang J
    Chemphyschem; 2019 Jul; 20(14):1885-1889. PubMed ID: 31099461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters.
    Santiago-González B; Monguzzi A; Pinchetti V; Casu A; Prato M; Lorenzi R; Campione M; Chiodini N; Santambrogio C; Meinardi F; Manna L; Brovelli S
    ACS Nano; 2017 Jun; 11(6):6233-6242. PubMed ID: 28485979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots.
    De Geyter B; Justo Y; Moreels I; Lambert K; Smet PF; Van Thourhout D; Houtepen AJ; Grodzinska D; de Mello Donega C; Meijerink A; Vanmaekelbergh D; Hens Z
    ACS Nano; 2011 Jan; 5(1):58-66. PubMed ID: 21189031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots.
    Zhao FA; Xiao HY; Bai XM; Zu XT
    Phys Chem Chem Phys; 2019 Aug; 21(29):16108-16119. PubMed ID: 31290876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and orientation effects on electronic energy transfer between silicon quantum dots with dopants and with silver adsorbates.
    Vinson N; Freitag H; Micha DA
    J Chem Phys; 2014 Jun; 140(24):244709. PubMed ID: 24985670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.
    Loh GC
    Chemphyschem; 2016 Apr; 17(8):1180-94. PubMed ID: 26817440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pb-Doped Ag
    Yu M; Yang X; Zhang Y; Yang H; Huang H; Wang Z; Dong J; Zhang R; Sun Z; Li C; Wang Q
    Small; 2021 Feb; 17(8):e2006111. PubMed ID: 33522125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids.
    Papagiorgis P; Stavrinadis A; Othonos A; Konstantatos G; Itskos G
    Sci Rep; 2016 Jan; 6():18735. PubMed ID: 26743934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large stokes shift of Ag doped CdSe quantum dots via aqueous route.
    Huang J; Jiang Y; Duan H; Liu C; Mi L; Lan X; Zhou H; Zhong H
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6687-93. PubMed ID: 24245130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.
    Ellingson RJ; Beard MC; Johnson JC; Yu P; Micic OI; Nozik AJ; Shabaev A; Efros AL
    Nano Lett; 2005 May; 5(5):865-71. PubMed ID: 15884885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications.
    Zaiats G; Yanover D; Vaxenburg R; Tilchin J; Sashchiuk A; Lifshitz E
    Materials (Basel); 2014 Oct; 7(11):7243-7275. PubMed ID: 28788244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals.
    Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraband Transitions of Nanocrystals Transforming from Lead Selenide to Self-doped Silver Selenide Quantum Dots by Cation Exchange.
    Bera R; Choi D; Jung YS; Song H; Jeong KS
    J Phys Chem Lett; 2022 Jul; 13(26):6138-6146. PubMed ID: 35759614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots.
    Kim S; Marshall AR; Kroupa DM; Miller EM; Luther JM; Jeong S; Beard MC
    ACS Nano; 2015 Aug; 9(8):8157-64. PubMed ID: 26222812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.