These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 28648497)
1. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum. El-Shamayleh Y; Kojima Y; Soetedjo R; Horwitz GD Neuron; 2017 Jul; 95(1):51-62.e4. PubMed ID: 28648497 [TBL] [Abstract][Full Text] [Related]
2. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex. Raghavan RT; Lisberger SG J Neurophysiol; 2017 Aug; 118(2):986-1001. PubMed ID: 28515286 [TBL] [Abstract][Full Text] [Related]
3. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. Ohtsuka K; Noda H J Neurophysiol; 1995 Nov; 74(5):1828-40. PubMed ID: 8592177 [TBL] [Abstract][Full Text] [Related]
4. Encoding of action by the Purkinje cells of the cerebellum. Herzfeld DJ; Kojima Y; Soetedjo R; Shadmehr R Nature; 2015 Oct; 526(7573):439-42. PubMed ID: 26469054 [TBL] [Abstract][Full Text] [Related]
5. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys. Noda H; Fujikado T J Neurophysiol; 1987 May; 57(5):1247-61. PubMed ID: 3585467 [TBL] [Abstract][Full Text] [Related]
7. Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters. Kim Y; Kim T; Rhee JK; Lee D; Tanaka-Yamamoto K; Yamamoto Y Brain Res; 2015 Sep; 1620():1-16. PubMed ID: 25988836 [TBL] [Abstract][Full Text] [Related]
8. Optogenetic manipulation of cerebellar Purkinje cell activity in vivo. Tsubota T; Ohashi Y; Tamura K; Sato A; Miyashita Y PLoS One; 2011; 6(8):e22400. PubMed ID: 21850224 [TBL] [Abstract][Full Text] [Related]
9. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. Kojima Y; Soetedjo R; Fuchs AF J Neurosci; 2010 Mar; 30(10):3715-27. PubMed ID: 20220005 [TBL] [Abstract][Full Text] [Related]
10. Behavior of the oculomotor vermis for five different types of saccade. Kojima Y; Soetedjo R; Fuchs AF J Neurophysiol; 2010 Dec; 104(6):3667-76. PubMed ID: 20962069 [TBL] [Abstract][Full Text] [Related]
11. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Hashimoto M; Yamanaka A; Kato S; Tanifuji M; Kobayashi K; Yaginuma H Front Neural Circuits; 2018; 12():6. PubMed ID: 29467628 [TBL] [Abstract][Full Text] [Related]
12. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Herzfeld DJ; Kojima Y; Soetedjo R; Shadmehr R Nat Neurosci; 2018 May; 21(5):736-743. PubMed ID: 29662213 [TBL] [Abstract][Full Text] [Related]
13. The same oculomotor vermal Purkinje cells encode the different kinematics of saccades and of smooth pursuit eye movements. Sun Z; Smilgin A; Junker M; Dicke PW; Thier P Sci Rep; 2017 Jan; 7():40613. PubMed ID: 28091557 [TBL] [Abstract][Full Text] [Related]
14. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions. Tsubota T; Ohashi Y; Tamura K Behav Brain Res; 2013 Oct; 255():26-34. PubMed ID: 23623886 [TBL] [Abstract][Full Text] [Related]
15. Saccade-related Purkinje cells in the cerebellar hemispheres of the monkey. Mano N; Ito Y; Shibutani H Exp Brain Res; 1991; 84(3):465-70. PubMed ID: 1864319 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. Prsa M; Dash S; Catz N; Dicke PW; Thier P J Neurosci; 2009 Jan; 29(1):250-62. PubMed ID: 19129401 [TBL] [Abstract][Full Text] [Related]
17. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. Soetedjo R; Fuchs AF J Neurosci; 2006 Jul; 26(29):7741-55. PubMed ID: 16855102 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-glucose deprivation increases firing of unipolar brush cells and enhances spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum. Takayasu Y; Shino M; Nikkuni O; Yoshida Y; Furuya N; Chikamatsu K Neurosci Res; 2016 May; 106():1-11. PubMed ID: 26535811 [TBL] [Abstract][Full Text] [Related]
19. Individual neurons in the caudal fastigial oculomotor region convey information on both macro- and microsaccades. Sun Z; Junker M; Dicke PW; Thier P Eur J Neurosci; 2016 Oct; 44(8):2531-2542. PubMed ID: 27255776 [TBL] [Abstract][Full Text] [Related]