BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28648582)

  • 1. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis.
    Wu P; Shou H; Xu G; Lian X
    Curr Opin Plant Biol; 2013 May; 16(2):205-12. PubMed ID: 23566853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.).
    Shen C; Yue R; Yang Y; Zhang L; Sun T; Tie S; Wang H
    PLoS One; 2014; 9(11):e112906. PubMed ID: 25386911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPX proteins regulate Pi homeostasis and signaling in different subcellular level.
    Zhou Z; Wang Z; Lv Q; Shi J; Zhong Y; Wu P; Mao C
    Plant Signal Behav; 2015; 10(9):e1061163. PubMed ID: 26224365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants.
    Ren M; Li Y; Zhu J; Zhao K; Wu Z; Mao C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System.
    Wang Y; Wang F; Lu H; Liu Y; Mao C
    Plant Cell Physiol; 2021 Sep; 62(4):564-572. PubMed ID: 33508131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W; Ying Y; Wang C; Zhao Y; Dong C; Whelan J; Shou H
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes.
    Chang MX; Gu M; Xia YW; Dai XL; Dai CR; Zhang J; Wang SC; Qu HY; Yamaji N; Feng Ma J; Xu GH
    Plant Physiol; 2019 Feb; 179(2):656-670. PubMed ID: 30567970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice.
    Gu M; Zhang J; Li H; Meng D; Li R; Dai X; Wang S; Liu W; Qu H; Xu G
    J Exp Bot; 2017 Jun; 68(13):3603-3615. PubMed ID: 28549191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis.
    Ueda Y; Sakuraba Y; Yanagisawa S
    Plant Cell Physiol; 2021 Sep; 62(4):573-581. PubMed ID: 33508134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
    Zhang Z; Liao H; Lucas WJ
    J Integr Plant Biol; 2014 Mar; 56(3):192-220. PubMed ID: 24417933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-mediated surveillance of phosphate transporters on the move.
    Liu TY; Lin WY; Huang TK; Chiou TJ
    Trends Plant Sci; 2014 Oct; 19(10):647-55. PubMed ID: 25001521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of phosphate acquisition by higher plants.
    Jain A; Nagarajan VK; Raghothama KG
    Cell Mol Life Sci; 2012 Oct; 69(19):3207-24. PubMed ID: 22899310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants.
    Liu J; Fu S; Yang L; Luan M; Zhao F; Luan S; Lan W
    Plant Signal Behav; 2016 Aug; 11(8):e1213474. PubMed ID: 27467463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectin enhances rice (Oryza sativa) root phosphorus remobilization.
    Zhu XF; Wang ZW; Wan JX; Sun Y; Wu YR; Li GX; Shen RF; Zheng SJ
    J Exp Bot; 2015 Feb; 66(3):1017-24. PubMed ID: 25528599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into plant phosphate sensing and signaling.
    Ham BK; Chen J; Yan Y; Lucas WJ
    Curr Opin Biotechnol; 2018 Feb; 49():1-9. PubMed ID: 28732264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.