These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28648816)

  • 1. How light affects the life of Botrytis.
    Schumacher J
    Fungal Genet Biol; 2017 Sep; 106():26-41. PubMed ID: 28648816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex.
    Canessa P; Schumacher J; Hevia MA; Tudzynski P; Larrondo LF
    PLoS One; 2013; 8(12):e84223. PubMed ID: 24391918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.
    Cohrs KC; Schumacher J
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana.
    Hevia MA; Canessa P; Müller-Esparza H; Larrondo LF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8744-9. PubMed ID: 26124115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototropism of Conidial Germ Tubes of Botrytis cinerea and Its Implication in Plant Infection Processes.
    Islam SZ; Honda Y; Sonhaji M
    Plant Dis; 1998 Aug; 82(8):850-856. PubMed ID: 30856909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light sensing in plant- and rock-associated black fungi.
    Schumacher J; Gorbushina AA
    Fungal Biol; 2020 May; 124(5):407-417. PubMed ID: 32389303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1.
    Brandhoff B; Simon A; Dornieden A; Schumacher J
    Curr Genet; 2017 Oct; 63(5):931-949. PubMed ID: 28382431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian clocks and the regulation of virulence in fungi: Getting up to speed.
    Hevia MA; Canessa P; Larrondo LF
    Semin Cell Dev Biol; 2016 Sep; 57():147-155. PubMed ID: 27039027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M
    FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-regulated plant growth and development.
    Kami C; Lorrain S; Hornitschek P; Fankhauser C
    Curr Top Dev Biol; 2010; 91():29-66. PubMed ID: 20705178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants.
    Suetsugu N; Wada M
    Photochem Photobiol; 2007; 83(1):87-93. PubMed ID: 16542113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The signal transducing photoreceptors of plants.
    Franklin KA; Larner VS; Whitelam GC
    Int J Dev Biol; 2005; 49(5-6):653-64. PubMed ID: 16096972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Around the Fungal Clock: Recent Advances in the Molecular Study of Circadian Clocks in Neurospora and Other Fungi.
    Montenegro-Montero A; Canessa P; Larrondo LF
    Adv Genet; 2015; 92():107-84. PubMed ID: 26639917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light sensing and responses in fungi.
    Yu Z; Fischer R
    Nat Rev Microbiol; 2019 Jan; 17(1):25-36. PubMed ID: 30377305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light signal transduction in higher plants.
    Chen M; Chory J; Fankhauser C
    Annu Rev Genet; 2004; 38():87-117. PubMed ID: 15568973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototropism: at the crossroads of light-signaling pathways.
    Goyal A; Szarzynska B; Fankhauser C
    Trends Plant Sci; 2013 Jul; 18(7):393-401. PubMed ID: 23562459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation.
    Demkura PV; Ballaré CL
    Mol Plant; 2012 May; 5(3):642-52. PubMed ID: 22447155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locus of blue and near ultraviolet reversible photoreaction in the stages of conidial development in Botrytis cinerea.
    Suzuki Y; Kumagai T; Oda Y
    J Gen Microbiol; 1977 Jan; 98(1):199-204. PubMed ID: 556757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and strategies of plant defense against Botrytis cinerea.
    AbuQamar S; Moustafa K; Tran LS
    Crit Rev Biotechnol; 2017 Mar; 37(2):262-274. PubMed ID: 28056558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.