These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28648816)

  • 21. Looking through the eyes of fungi: molecular genetics of photoreception.
    Herrera-Estrella A; Horwitz BA
    Mol Microbiol; 2007 Apr; 64(1):5-15. PubMed ID: 17376067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photobiological control of crop production and plant diseases.
    Kotzabasis K; Navakoudis E; Vakalounakis DJ
    Z Naturforsch C J Biosci; 2008; 63(1-2):113-23. PubMed ID: 18386499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aureochromes - Blue Light Receptors.
    Matiiv AB; Chekunova EM
    Biochemistry (Mosc); 2018 Jun; 83(6):662-673. PubMed ID: 30195323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new transformant selection system for the gray mold fungus Botrytis cinerea based on the expression of fenhexamid-insensitive ERG27 variants.
    Cohrs KC; Burbank J; Schumacher J
    Fungal Genet Biol; 2017 Mar; 100():42-51. PubMed ID: 28188884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence.
    Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea.
    Kokkelink L; Minz A; Al-Masri M; Giesbert S; Barakat R; Sharon A; Tudzynski P
    Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cultural methods and environmental conditions affecting gray mold and its management in lisianthus.
    Shpialter L; David DR; Dori I; Yermiahu U; Pivonia S; Levite R; Elad Y
    Phytopathology; 2009 May; 99(5):557-70. PubMed ID: 19351252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.
    Janisiewicz WJ; Takeda F; Glenn DM; Camp MJ; Jurick WM
    Phytopathology; 2016 Apr; 106(4):386-94. PubMed ID: 26714103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes.
    Schumacher J
    Mol Microbiol; 2016 Feb; 99(4):729-48. PubMed ID: 26514268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea.
    Viefhues A; Schlathoelter I; Simon A; Viaud M; Tudzynski P
    Eukaryot Cell; 2015 Jul; 14(7):636-51. PubMed ID: 25934690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial Photosensory Proteins and Their Role in Plant-pathogen Interactions.
    Kraiselburd I; Moyano L; Carrau A; Tano J; Orellano EG
    Photochem Photobiol; 2017 May; 93(3):666-674. PubMed ID: 28500702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant flavoprotein photoreceptors.
    Christie JM; Blackwood L; Petersen J; Sullivan S
    Plant Cell Physiol; 2015 Mar; 56(3):401-13. PubMed ID: 25516569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea.
    Schumacher J; Kokkelink L; Huesmann C; Jimenez-Teja D; Collado IG; Barakat R; Tudzynski P; Tudzynski B
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1443-59. PubMed ID: 18842094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Root phototropism: how light and gravity interact in shaping plant form.
    Kiss JZ; Correll MJ; Mullen JL; Hangarter RP; Edelmann RE
    Gravit Space Biol Bull; 2003 Jun; 16(2):55-60. PubMed ID: 12959132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea.
    Marschall R; Tudzynski P
    Mol Microbiol; 2016 Jul; 101(2):281-98. PubMed ID: 27062300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungi, hidden in soil or up in the air: light makes a difference.
    Rodriguez-Romero J; Hedtke M; Kastner C; Müller S; Fischer R
    Annu Rev Microbiol; 2010; 64():585-610. PubMed ID: 20533875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expansive Phenotypic Landscape of Botrytis cinerea Shows Differential Contribution of Genetic Diversity and Plasticity.
    Corwin JA; Subedy A; Eshbaugh R; Kliebenstein DJ
    Mol Plant Microbe Interact; 2016 Apr; 29(4):287-98. PubMed ID: 26828401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Licensed to kill: the lifestyle of a necrotrophic plant pathogen.
    van Kan JA
    Trends Plant Sci; 2006 May; 11(5):247-53. PubMed ID: 16616579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.