These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28649029)

  • 1. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.
    Kolb M; Bahadir M; Teichgräber B
    Water Res; 2017 Oct; 122():645-654. PubMed ID: 28649029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment.
    Miller DG; Brayton SV; Boyles WT
    Water Environ Res; 2001; 73(1):63-71. PubMed ID: 11558305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of chemical oxygen demand (COD) using ultrasound digestion and oxidation-reduction potential-based titration.
    Kim H; Lim H; Colosimo MF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1665-70. PubMed ID: 17849309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified APHA closed-tube reflux colorimetric method for TOC determination in water and wastewater.
    Salihu SO; Bakar NKA
    Environ Monit Assess; 2018 May; 190(6):369. PubMed ID: 29850927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples.
    Kayaalp N; Ersahin ME; Ozgun H; Koyuncu I; Kinaci C
    Environ Sci Pollut Res Int; 2010 Nov; 17(9):1547-52. PubMed ID: 20496007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths.
    Ouejhani A; Hellal F; Dachraoui M; Lallevé G; Fauvarque JF
    J Hazard Mater; 2008 Sep; 157(2-3):423-31. PubMed ID: 18314266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.
    Dubber D; Gray NF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1595-600. PubMed ID: 20721800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tannery wastewater pre-treatment.
    Elsheikh MA
    Water Sci Technol; 2009; 60(2):433-40. PubMed ID: 19633385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Chloride interference in the determination of COD of landfill leachate].
    Yang SY; Zhang WY; Shan L; Yang X; Wang P
    Huan Jing Ke Xue; 2010 Apr; 31(4):1014-20. PubMed ID: 20527185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
    Boopathy R; Sekaran G
    J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reliable free chemical demand () method.
    Geerdink RB; Brouwer J; Epema OJ
    Anal Methods; 2009 Nov; 1(2):108-114. PubMed ID: 32938149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to eliminate bromide interference on standard COD test for bromide-rich industrial wastewater.
    Shi X; Huang S; Yeap TS; Ong SL; Ng HY
    Chemosphere; 2020 Feb; 240():124804. PubMed ID: 31541900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing dichromate with hydrogen peroxide in the chemical oxygen demand (COD) test.
    Carbajal-Palacios P; Balderas-Hernández P; Ibanez JG; Roa-Morales G
    Water Sci Technol; 2012; 66(5):1069-73. PubMed ID: 22797236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical oxygen demand: Historical perspectives and future challenges.
    Geerdink RB; Sebastiaan van den Hurk R; Epema OJ
    Anal Chim Acta; 2017 Apr; 961():1-11. PubMed ID: 28224900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of organic matter concentration in winery wastewater: a case study from Australia.
    Quayle WC; Fattore A; Zandona R; Christen EW; Arienzo M
    Water Sci Technol; 2009; 60(10):2521-8. PubMed ID: 19923757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)--a case study of Saddiq Leather Works.
    Haydar S; Aziz JA
    J Hazard Mater; 2009 Apr; 163(2-3):1076-83. PubMed ID: 18723279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid determination method of chemical oxygen demand in printing and dyeing wastewater using ultraviolet spectroscopy.
    Kong H; Wu H
    Water Environ Res; 2009 Nov; 81(11):2381-6. PubMed ID: 19957770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of treatment alternatives for laboratory cod wastewater: a practical comparison with emphasis on cost and performance.
    Leong ST; Muttamara S; Laortanakul P; Lin HT
    Environ Monit Assess; 2002 Feb; 74(1):11-25. PubMed ID: 11893158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.