These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2864922)

  • 1. A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by Clostridium perfringens.
    Aragozzini F; Canzi E; Ferrari A; Maconi E; Sidjimov A
    Biochem J; 1985 Sep; 230(2):451-5. PubMed ID: 2864922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of bile acids into iso-bile acids by Clostridium perfringens: possible transport of 3 beta-hydrogen via the coenzyme.
    Batta AK; Salen G; Shefer S
    Hepatology; 1985; 5(6):1126-31. PubMed ID: 2866156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of bile acids by Clostridium perfringens.
    Hirano S; Masuda N; Oda H; Mukai H
    Appl Environ Microbiol; 1981 Sep; 42(3):394-9. PubMed ID: 6271056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of primary bile acids by Clostridium perfringens.
    Macdonald IA; Hutchison DM; Forrest TP; Bokkenheuser VD; Winter J; Holdeman LV
    J Steroid Biochem; 1983 Jan; 18(1):97-104. PubMed ID: 6306343
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of 7alpha-, 12alpha-dihydroxy-3-oxo cholanoic acid as the major degradation product from cholic by C. perfringens.
    Macdonald IA; Forrest TP; Costain GA; Rao BG
    J Steroid Biochem; 1978 Apr; 9(4):353-8. PubMed ID: 207931
    [No Abstract]   [Full Text] [Related]  

  • 6. Biotransformation of bile acids by clostridia.
    Owen RW
    J Med Microbiol; 1985 Oct; 20(2):233-8. PubMed ID: 2864454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum.
    Edenharder R; Schneider J
    Appl Environ Microbiol; 1985 Apr; 49(4):964-8. PubMed ID: 4004226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bile acid transformations by Alcaligenes recti.
    Mazumder I; Mahato SB
    Steroids; 1993 Feb; 58(2):79-86. PubMed ID: 8484188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enzymic and chemical synthesis of ursodeoxycholic and chenodeoxycholic acid from cholic acid.
    Sutherland JD; Macdonald IA; Forrest TP
    Prep Biochem; 1982; 12(4):307-21. PubMed ID: 6961394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chenodeoxycholic acid synthesis in the hamster: a metabolic pathway via 3 beta, 7 alpha-dihydroxy-5-cholen-24-oic acid.
    Kulkarni B; Javitt NB
    Steroids; 1982 Nov; 40(5):581-9. PubMed ID: 7186687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia.
    Edenharder R; Knaflic T
    J Lipid Res; 1981 May; 22(4):652-8. PubMed ID: 7276738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.
    Marschall HU; Matern H; Wietholtz H; Egestad B; Matern S; Sjövall J
    J Clin Invest; 1992 Jun; 89(6):1981-7. PubMed ID: 1602004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential bile acid metabolites. 9. 3,12-Dihydroxy- and 12 beta-hydroxy-5 alpha-cholanoic acids.
    Iida T; Tamura T; Matsumoto T; Chang FC
    J Lipid Res; 1985 Jul; 26(7):874-81. PubMed ID: 4031665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of bile acids on intestinal microflora.
    Floch MH; Binder HJ; Filburn B; Gershengoren W
    Am J Clin Nutr; 1972 Dec; 25(12):1418-26. PubMed ID: 4344803
    [No Abstract]   [Full Text] [Related]  

  • 16. Epimerization of the four 3,7-dihydroxy bile acid epimers by human fecal microorganisms in anaerobic mixed cultures and in feces.
    Setoguchi T; Higashi S; Tateno S; Yahiro K; Katsuki T
    J Lipid Res; 1984 Nov; 25(11):1246-56. PubMed ID: 6520544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New bile acid analogs: 3 alpha, 7 alpha-dihydroxy-7 beta-methyl-5 beta-cholanoic acid, 3 alpha, 7 beta-dihydroxy-7 alpha-methyl-5 beta-cholanoic acid, and 3 alpha-hydroxy-7 xi-methyl-5 beta-cholanoic acid.
    Une M; Cohen BI; Mosbach EH
    J Lipid Res; 1984 Apr; 25(4):407-10. PubMed ID: 6547159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of new bile salt analogues, sodium 3 alpha, 7 alpha-dihydroxy-5 beta-cholane-24-sulfonate and sodium 3 alpha, 7 beta-dihydroxy-5 beta-cholane-24-sulfonate.
    Kihira K; Yoshii M; Okamoto A; Ikawa S; Ishii H; Hoshita T
    J Lipid Res; 1990 Jul; 31(7):1323-6. PubMed ID: 2401863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective reduction of oxo bile acids: synthesis of 3 beta-, 7 beta-, and 12 beta-hydroxy bile acids.
    Batta AK; Aggarwal SK; Salen G; Shefer S
    J Lipid Res; 1991 Jun; 32(6):977-83. PubMed ID: 1940629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens.
    Nair PP; Gordon M; Gordon S; Reback J; Mendeloff AI
    Life Sci; 1965 Oct; 4(19):1887-92. PubMed ID: 4284941
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.