These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 28649257)
1. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. Santamaría ME; Martinez M; Arnaiz A; Ortego F; Grbic V; Diaz I Front Plant Sci; 2017; 8():975. PubMed ID: 28649257 [TBL] [Abstract][Full Text] [Related]
2. An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against Santamaría ME; Martínez M; Arnaiz A; Rioja C; Burow M; Grbic V; Díaz I Plant Physiol; 2019 Apr; 179(4):1298-1314. PubMed ID: 30765478 [TBL] [Abstract][Full Text] [Related]
3. Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids. Bui H; Greenhalgh R; Ruckert A; Gill GS; Lee S; Ramirez RA; Clark RM Front Plant Sci; 2018; 9():1222. PubMed ID: 30186298 [TBL] [Abstract][Full Text] [Related]
4. Making a Better Home: Modulation of Plant Defensive Response by Arena GD; Ramos-González PL; Rogerio LA; Ribeiro-Alves M; Casteel CL; Freitas-Astúa J; Machado MA Front Plant Sci; 2018; 9():1147. PubMed ID: 30158942 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis Kunitz Trypsin Inhibitors in Defense Against Spider Mites. Arnaiz A; Talavera-Mateo L; Gonzalez-Melendi P; Martinez M; Diaz I; Santamaria ME Front Plant Sci; 2018; 9():986. PubMed ID: 30042779 [No Abstract] [Full Text] [Related]
6. Plant-Herbivore Interaction: Dissection of the Cellular Pattern of Tetranychus urticae Feeding on the Host Plant. Bensoussan N; Santamaria ME; Zhurov V; Diaz I; Grbić M; Grbić V Front Plant Sci; 2016; 7():1105. PubMed ID: 27512397 [TBL] [Abstract][Full Text] [Related]
7. Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Santamaría ME; Arnaiz A; Velasco-Arroyo B; Grbic V; Diaz I; Martinez M Sci Rep; 2018 Jun; 8(1):9432. PubMed ID: 29930298 [TBL] [Abstract][Full Text] [Related]
8. The Arabidopsis thioredoxin TRXh5regulates the S-nitrosylation pattern of the TIRK receptor being both proteins essential in the modulation of defences to Tetranychus urticae. Arnaiz A; Romero-Puertas MC; Santamaria ME; Rosa-Diaz I; Arbona V; Muñoz A; Grbic V; González-Melendi P; Mar Castellano M; Sandalio LM; Martinez M; Diaz I Redox Biol; 2023 Nov; 67():102902. PubMed ID: 37797370 [TBL] [Abstract][Full Text] [Related]
9. Concerted cis and trans effects underpin heightened defense gene expression in multi-herbivore-resistant maize lines. Ji M; Bui H; Ramirez RA; Clark RM Plant J; 2022 Jul; 111(2):508-528. PubMed ID: 35575017 [TBL] [Abstract][Full Text] [Related]
10. Hydroxynitrile lyase defends Arabidopsis against Tetranychus urticae. Arnaiz A; Santamaria ME; Rosa-Diaz I; Garcia I; Dixit S; Vallejos S; Gotor C; Martinez M; Grbic V; Diaz I Plant Physiol; 2022 Aug; 189(4):2244-2258. PubMed ID: 35474139 [TBL] [Abstract][Full Text] [Related]
11. Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae? Agut B; Pastor V; Jaques JA; Flors V Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29466295 [No Abstract] [Full Text] [Related]
12. Opposite roles of MAPKKK17 and MAPKKK21 against Romero-Hernandez G; Martinez M Front Plant Sci; 2022; 13():1038866. PubMed ID: 36570948 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. Yang J; Wang GQ; Zhou Q; Lu W; Ma JQ; Huang JH Exp Appl Acarol; 2019 Jun; 78(2):273-293. PubMed ID: 31168751 [TBL] [Abstract][Full Text] [Related]
15. Induced Tomato Plant Resistance Against Pérez-Hedo M; Arias-Sanguino ÁM; Urbaneja A Front Plant Sci; 2018; 9():1419. PubMed ID: 30333844 [TBL] [Abstract][Full Text] [Related]
16. Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. Rioja C; Zhurov V; Bruinsma K; Grbic M; Grbic V Mol Plant Microbe Interact; 2017 Dec; 30(12):935-945. PubMed ID: 28857675 [TBL] [Abstract][Full Text] [Related]
17. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Villarroel CA; Jonckheere W; Alba JM; Glas JJ; Dermauw W; Haring MA; Van Leeuwen T; Schuurink RC; Kant MR Plant J; 2016 Apr; 86(2):119-31. PubMed ID: 26946468 [TBL] [Abstract][Full Text] [Related]
18. Cross-talk between high light stress and plant defence to the two-spotted spider mite in Arabidopsis thaliana. Barczak-Brzyżek AK; Kiełkiewicz M; Gawroński P; Kot K; Filipecki M; Karpińska B Exp Appl Acarol; 2017 Oct; 73(2):177-189. PubMed ID: 29119280 [TBL] [Abstract][Full Text] [Related]
19. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Wybouw N; Balabanidou V; Ballhorn DJ; Dermauw W; Grbić M; Vontas J; Van Leeuwen T Insect Biochem Mol Biol; 2012 Dec; 42(12):881-9. PubMed ID: 22960016 [TBL] [Abstract][Full Text] [Related]
20. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation. Gols R; Roosjen M; Dijkman H; Dicke M J Chem Ecol; 2003 Dec; 29(12):2651-66. PubMed ID: 14969353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]