These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28649364)

  • 1. Immunosurveillance by human γδ T lymphocytes: the emerging role of butyrophilins.
    Kabelitz D; Lettau M; Janssen O
    F1000Res; 2017; 6():. PubMed ID: 28649364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology.
    Vantourout P; Laing A; Woodward MJ; Zlatareva I; Apolonia L; Jones AW; Snijders AP; Malim MH; Hayday AC
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1039-1044. PubMed ID: 29339503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butyrophilins: Dynamic Regulators of Protective T Cell Immunity in Cancer.
    Kumari R; Hosseini ES; Warrington KE; Milonas T; Payne KK
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells.
    Payne KK; Mine JA; Biswas S; Chaurio RA; Perales-Puchalt A; Anadon CM; Costich TL; Harro CM; Walrath J; Ming Q; Tcyganov E; Buras AL; Rigolizzo KE; Mandal G; Lajoie J; Ophir M; Tchou J; Marchion D; Luca VC; Bobrowicz P; McLaughlin B; Eskiocak U; Schmidt M; Cubillos-Ruiz JR; Rodriguez PC; Gabrilovich DI; Conejo-Garcia JR
    Science; 2020 Aug; 369(6506):942-949. PubMed ID: 32820120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Immunity by Butyrophilins.
    Rhodes DA; Reith W; Trowsdale J
    Annu Rev Immunol; 2016 May; 34():151-72. PubMed ID: 26772212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells.
    Chan KF; Duarte JDG; Ostrouska S; Behren A
    Front Immunol; 2022; 13():894315. PubMed ID: 35880177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells.
    Herrmann T; Karunakaran MM; Fichtner AS
    Immunol Rev; 2020 Nov; 298(1):218-236. PubMed ID: 32981055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butyrophilins: γδ T Cell Receptor Ligands, Immunomodulators and More.
    Herrmann T; Karunakaran MM
    Front Immunol; 2022; 13():876493. PubMed ID: 35371078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity.
    Blazquez JL; Benyamine A; Pasero C; Olive D
    Front Immunol; 2018; 9():1601. PubMed ID: 30050536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune recognition of phosphoantigen-butyrophilin molecular complexes by γδ T cells.
    Uldrich AP; Rigau M; Godfrey DI
    Immunol Rev; 2020 Nov; 298(1):74-83. PubMed ID: 33017054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vγ9Vδ2 T Cells.
    Peigné CM; Léger A; Gesnel MC; Konczak F; Olive D; Bonneville M; Breathnach R; Scotet E
    J Immunol; 2017 Jun; 198(11):4228-4234. PubMed ID: 28461569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones.
    De Libero G; Lau SY; Mori L
    Front Immunol; 2014; 5():679. PubMed ID: 25642230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. γδ T Cell-Mediated Immune Responses in Disease and Therapy.
    Latha TS; Reddy MC; Durbaka PV; Rachamallu A; Pallu R; Lomada D
    Front Immunol; 2014; 5():571. PubMed ID: 25426120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells.
    Boutin L; Scotet E
    Front Immunol; 2018; 9():828. PubMed ID: 29731756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of human gammadelta T lymphocytes for immunotherapy of cancer.
    Kabelitz D; Wesch D; Pitters E; Zöller M
    Int J Cancer; 2004 Dec; 112(5):727-32. PubMed ID: 15386388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Disordered Regions and Their Roles in the Anti-Pathogenic and Immunomodulatory Functions of Butyrophilins.
    Redwan EM; Al-Hejin AM; Almehdar HA; Elsaway AM; Uversky VN
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29401697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecules and Mechanisms Implicated in the Peculiar Antigenic Activation Process of Human Vγ9Vδ2 T Cells.
    Harly C; Peigné CM; Scotet E
    Front Immunol; 2014; 5():657. PubMed ID: 25601861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer.
    Mehdikhani F; Bahar A; Bashi M; Mohammadlou M; Yousefi B
    Cell Biochem Funct; 2024 Jul; 42(5):e4081. PubMed ID: 38934382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bibliometrics Analysis of Butyrophilins as Immune Regulators [1992-2019] and Implications for Cancer Prognosis.
    Wang Y; Zhao N; Zhang X; Li Z; Liang Z; Yang J; Liu X; Wu Y; Chen K; Gao Y; Yin Z; Lin X; Zhou H; Tian D; Cao Y; Hao J
    Front Immunol; 2020; 11():1187. PubMed ID: 32695099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells.
    Wang H; Morita CT
    J Immunol; 2015 Nov; 195(10):4583-94. PubMed ID: 26475929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.