These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 28649442)

  • 1. Next-generation mammalian genetics toward organism-level systems biology.
    Susaki EA; Ukai H; Ueda HR
    NPJ Syst Biol Appl; 2017; 3():15. PubMed ID: 28649442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of knock-in mice in a single generation from embryonic stem cells.
    Ukai H; Kiyonari H; Ueda HR
    Nat Protoc; 2017 Dec; 12(12):2513-2530. PubMed ID: 29189772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards organism-level systems biology by next-generation genetics and whole-organ cell profiling.
    Minami Y; Yuan Y; Ueda HR
    Biophys Rev; 2021 Dec; 13(6):1113-1126. PubMed ID: 35059031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation human genetics for organism-level systems biology.
    Ukai H; Sumiyama K; Ueda HR
    Curr Opin Biotechnol; 2019 Aug; 58():137-145. PubMed ID: 30954899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics.
    Minami Y; Yuan Y; Ueda HR
    J Biol Rhythms; 2022 Apr; 37(2):135-151. PubMed ID: 35137623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene.
    Sunagawa GA; Sumiyama K; Ukai-Tadenuma M; Perrin D; Fujishima H; Ukai H; Nishimura O; Shi S; Ohno RI; Narumi R; Shimizu Y; Tone D; Ode KL; Kuraku S; Ueda HR
    Cell Rep; 2016 Jan; 14(3):662-677. PubMed ID: 26774482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.
    Aida T; Imahashi R; Tanaka K
    Dev Growth Differ; 2014 Jan; 56(1):34-45. PubMed ID: 24444057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Editing in Mice Using TALE Nucleases.
    Wefers B; Brandl C; Ortiz O; Wurst W; Kühn R
    Methods Mol Biol; 2016; 1338():229-43. PubMed ID: 26443225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclease-mediated genome editing: At the front-line of functional genomics technology.
    Sakuma T; Woltjen K
    Dev Growth Differ; 2014 Jan; 56(1):2-13. PubMed ID: 24387662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.
    Chu VT; Weber T; Graf R; Sommermann T; Petsch K; Sack U; Volchkov P; Rajewsky K; Kühn R
    BMC Biotechnol; 2016 Jan; 16():4. PubMed ID: 26772810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals.
    Susaki EA; Ueda HR
    Cell Chem Biol; 2016 Jan; 23(1):137-157. PubMed ID: 26933741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins.
    Jia J; Bai F; Jin Y; Santostefano KE; Ha UH; Wu D; Wu W; Terada N; Jin S
    Stem Cells Transl Med; 2015 Aug; 4(8):913-26. PubMed ID: 26062981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonucleases: new tools to edit the mouse genome.
    Wijshake T; Baker DJ; van de Sluis B
    Biochim Biophys Acta; 2014 Oct; 1842(10):1942-1950. PubMed ID: 24794718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light up the embryos: knock-in reporter generation for mouse developmental biology.
    Gu B
    Anim Reprod; 2020 Aug; 17(3):e20200055. PubMed ID: 33029220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes.
    Nakao H; Harada T; Nakao K; Kiyonari H; Inoue K; Furuta Y; Aiba A
    Genesis; 2016 Feb; 54(2):65-77. PubMed ID: 26713866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emerging genomics and systems biology research lead to systems genomics studies.
    Yang MQ; Yoshigoe K; Yang W; Tong W; Qin X; Dunker A; Chen Z; Arbania HR; Liu JS; Niemierko A; Yang JY
    BMC Genomics; 2014; 15 Suppl 11(Suppl 11):I1. PubMed ID: 25558922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.