These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Vriens K; Cools TL; Harvey PJ; Craik DJ; Braem A; Vleugels J; De Coninck B; Cammue BP; Thevissen K Peptides; 2016 Jan; 75():71-9. PubMed ID: 26592804 [TBL] [Abstract][Full Text] [Related]
3. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry. de Medeiros LN; Domitrovic T; de Andrade PC; Faria J; Bergter EB; Weissmüller G; Kurtenbach E Biopolymers; 2014 Nov; 102(6):456-64. PubMed ID: 25283273 [TBL] [Abstract][Full Text] [Related]
4. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. Luiz RL; Vila TV; de Mello JC; Nakamura CV; Rozental S; Ishida K BMC Complement Altern Med; 2015 Mar; 15():68. PubMed ID: 25886244 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures. Vriens K; Cools TL; Harvey PJ; Craik DJ; Spincemaille P; Cassiman D; Braem A; Vleugels J; Nibbering PH; Drijfhout JW; De Coninck B; Cammue BP; Thevissen K PLoS One; 2015; 10(8):e0132701. PubMed ID: 26248029 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Haque F; Alfatah M; Ganesan K; Bhattacharyya MS Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404 [TBL] [Abstract][Full Text] [Related]
7. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. Khan MS; Ahmad I J Antimicrob Chemother; 2012 Mar; 67(3):618-21. PubMed ID: 22167241 [TBL] [Abstract][Full Text] [Related]
8. In vitro method to study antifungal perfusion in Candida biofilms. Samaranayake YH; Ye J; Yau JY; Cheung BP; Samaranayake LP J Clin Microbiol; 2005 Feb; 43(2):818-25. PubMed ID: 15695686 [TBL] [Abstract][Full Text] [Related]
9. In vitro activity of 2-cyclohexylidenhydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of Candida spp. and fluconazole-resistant Candida albicans. De Logu A; Saddi M; Cardia MC; Borgna R; Sanna C; Saddi B; Maccioni E J Antimicrob Chemother; 2005 May; 55(5):692-8. PubMed ID: 15772140 [TBL] [Abstract][Full Text] [Related]
10. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model. El-Azizi M; Farag N; Khardori N Ann Clin Microbiol Antimicrob; 2015 Apr; 14():21. PubMed ID: 25885806 [TBL] [Abstract][Full Text] [Related]
11. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Perumal P; Mekala S; Chaffin WL Antimicrob Agents Chemother; 2007 Jul; 51(7):2454-63. PubMed ID: 17502416 [TBL] [Abstract][Full Text] [Related]
12. Synergic Effect of the Antimicrobial Peptide ToAP2 and Fluconazole on do Nascimento Dias J; Hurtado Erazo FA; Bessa LJ; Eaton P; Leite JRSA; Paes HC; Nicola AM; Silva-Pereira I; Albuquerque P Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063009 [No Abstract] [Full Text] [Related]
13. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Nett J; Lincoln L; Marchillo K; Massey R; Holoyda K; Hoff B; VanHandel M; Andes D Antimicrob Agents Chemother; 2007 Feb; 51(2):510-20. PubMed ID: 17130296 [TBL] [Abstract][Full Text] [Related]
14. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. do Nascimento Dias J; de Souza Silva C; de Araújo AR; Souza JMT; de Holanda Veloso Júnior PH; Cabral WF; da Glória da Silva M; Eaton P; de Souza de Almeida Leite JR; Nicola AM; Albuquerque P; Silva-Pereira I Sci Rep; 2020 Jun; 10(1):10327. PubMed ID: 32587287 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of Candida biofilms to histatin 5 and fluconazole. Konopka K; Dorocka-Bobkowska B; Gebremedhin S; Düzgüneş N Antonie Van Leeuwenhoek; 2010 May; 97(4):413-7. PubMed ID: 20140514 [TBL] [Abstract][Full Text] [Related]
17. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. Khan MS; Ahmad I J Ethnopharmacol; 2012 Mar; 140(2):416-23. PubMed ID: 22326355 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms. Nailis H; Vandenbosch D; Deforce D; Nelis HJ; Coenye T Res Microbiol; 2010 May; 161(4):284-92. PubMed ID: 20170727 [TBL] [Abstract][Full Text] [Related]
19. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis. Vila TV; Chaturvedi AK; Rozental S; Lopez-Ribot JL Antimicrob Agents Chemother; 2015 Dec; 59(12):7611-20. PubMed ID: 26416861 [TBL] [Abstract][Full Text] [Related]
20. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]