These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28649841)
41. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts. Kim HY; Cho S; Sa YJ; Hwang SM; Park GG; Shin TJ; Jeong HY; Yim SD; Joo SH Small; 2016 Oct; 12(38):5347-5353. PubMed ID: 27515995 [TBL] [Abstract][Full Text] [Related]
42. Recent advances in electrocatalysts toward the oxygen reduction reaction: the case of PtNi octahedra. Chaudhari NK; Joo J; Kim B; Ruqia B; Choi SI; Lee K Nanoscale; 2018 Nov; 10(43):20073-20088. PubMed ID: 30376016 [TBL] [Abstract][Full Text] [Related]
43. Elucidation of adsorption processes at the surface of Pt(331) model electrocatalysts in acidic aqueous media. Pohl MD; Colic V; Scieszka D; Bandarenka AS Phys Chem Chem Phys; 2016 Apr; 18(16):10792-9. PubMed ID: 26923167 [TBL] [Abstract][Full Text] [Related]
44. Structural disordering of de-alloyed Pt bimetallic nanocatalysts: the effect on oxygen reduction reaction activity and stability. Spanos I; Dideriksen K; Kirkensgaard JJ; Jelavic S; Arenz M Phys Chem Chem Phys; 2015 Nov; 17(42):28044-53. PubMed ID: 25537262 [TBL] [Abstract][Full Text] [Related]
45. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Yano H; Kataoka M; Yamashita H; Uchida H; Watanabe M Langmuir; 2007 May; 23(11):6438-45. PubMed ID: 17441742 [TBL] [Abstract][Full Text] [Related]
46. Fe Stabilization by Intermetallic L1 Li J; Xi Z; Pan YT; Spendelow JS; Duchesne PN; Su D; Li Q; Yu C; Yin Z; Shen B; Kim YS; Zhang P; Sun S J Am Chem Soc; 2018 Feb; 140(8):2926-2932. PubMed ID: 29411604 [TBL] [Abstract][Full Text] [Related]
47. Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal-Electrolyte Interfaces. Liu H; Chen M; Sun F; Zaman S; Wang M; Wang H ACS Appl Mater Interfaces; 2022 Mar; 14(11):13891-13903. PubMed ID: 35274947 [TBL] [Abstract][Full Text] [Related]
48. Oleylamine Aging of PtNi Nanoparticles Giving Enhanced Functionality for the Oxygen Reduction Reaction. Leteba GM; Wang YC; Slater TJA; Cai R; Byrne C; Race CP; Mitchell DRG; Levecque PBJ; Young NP; Holmes SM; Walton A; Kirkland AI; Haigh SJ; Lang CI Nano Lett; 2021 May; 21(9):3989-3996. PubMed ID: 33899489 [TBL] [Abstract][Full Text] [Related]
49. Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Yang Y; Jin H; Kim HY; Yoon J; Park J; Baik H; Joo SH; Lee K Nanoscale; 2016 Aug; 8(33):15167-72. PubMed ID: 27507777 [TBL] [Abstract][Full Text] [Related]
50. Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst. Xiao BB; Jiang XB; Jiang Q Phys Chem Chem Phys; 2016 May; 18(21):14234-43. PubMed ID: 27167779 [TBL] [Abstract][Full Text] [Related]
51. Structural transformation of carbon-supported Pt₃Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Zou L; Li J; Yuan T; Zhou Y; Li X; Yang H Nanoscale; 2014 Sep; 6(18):10686-92. PubMed ID: 25092107 [TBL] [Abstract][Full Text] [Related]
52. Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions. Zou X; Chen S; Wang Q; Gao X; Li J; Li J; Li L; Ding W; Wei Z Nanoscale; 2019 Nov; 11(42):20115-20122. PubMed ID: 31612897 [TBL] [Abstract][Full Text] [Related]
53. In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. Li JL; Li YF; Liu ZP JACS Au; 2023 Apr; 3(4):1162-1175. PubMed ID: 37124303 [TBL] [Abstract][Full Text] [Related]
54. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts. Strasser P Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179 [TBL] [Abstract][Full Text] [Related]
55. 3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. Wei Q; Zhang G; Yang X; Chenitz R; Banham D; Yang L; Ye S; Knights S; Sun S ACS Appl Mater Interfaces; 2017 Oct; 9(42):36944-36954. PubMed ID: 28982005 [TBL] [Abstract][Full Text] [Related]
56. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. Li Q; Zhu H; Zheng L; Fan L; Wang N; Rong Y; Ren Y; Chen J; Deng J; Xing X Nano Lett; 2017 Dec; 17(12):7892-7896. PubMed ID: 29161048 [TBL] [Abstract][Full Text] [Related]
57. A P-doped PtNi alloy supported on N,C-doped TiO Lu C; Xu C; Guo PP; Yang KZ; Xu Y; Chi HM; Wei PJ; Liu JG Chem Commun (Camb); 2023 May; 59(43):6525-6528. PubMed ID: 37158745 [TBL] [Abstract][Full Text] [Related]
58. PtNi/NiO Clusters Coated by Hollow Sillica: Novel Design for Highly Efficient Hydrogen Production from Ammonia-Borane. Ge Y; Ye W; Shah ZH; Lin X; Lu R; Zhang S ACS Appl Mater Interfaces; 2017 Feb; 9(4):3749-3756. PubMed ID: 28075124 [TBL] [Abstract][Full Text] [Related]
59. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Hansen HA; Rossmeisl J; Nørskov JK Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233 [TBL] [Abstract][Full Text] [Related]
60. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Bhunia K; Khilari S; Pradhan D Dalton Trans; 2017 Nov; 46(44):15558-15566. PubMed ID: 29091086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]