These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 28650048)
1. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes. Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048 [TBL] [Abstract][Full Text] [Related]
2. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. Shen Z; Ye H; Yi X; Li Y ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506 [TBL] [Abstract][Full Text] [Related]
3. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Shen Z; Ye H; Li Y Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792 [TBL] [Abstract][Full Text] [Related]
4. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles. Tang H; Ye H; Zhang H; Zheng Y Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589 [TBL] [Abstract][Full Text] [Related]
5. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles. Tang H; Zhang H; Ye H; Zheng Y J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830 [TBL] [Abstract][Full Text] [Related]
6. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. Yue T; Zhang X ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100 [TBL] [Abstract][Full Text] [Related]
7. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane. Zhang Z; Lin X; Gu N Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189 [TBL] [Abstract][Full Text] [Related]
8. Shape-dependent internalization kinetics of nanoparticles by membranes. Chen L; Xiao S; Zhu H; Wang L; Liang H Soft Matter; 2016 Mar; 12(9):2632-41. PubMed ID: 26853682 [TBL] [Abstract][Full Text] [Related]
9. Endocytosis efficiency and targeting ability by the cooperation of nanoparticles. Ma T; Chen T; Tan H; Zhang S; Wei H; Wang Q; Zhang Z; Zhou W; Wang L; Wang G Nanoscale; 2024 Oct; 16(39):18553-18569. PubMed ID: 39290054 [TBL] [Abstract][Full Text] [Related]
10. Wrapping of nanoparticles by membranes. Bahrami AH; Raatz M; Agudo-Canalejo J; Michel R; Curtis EM; Hall CK; Gradzielski M; Lipowsky R; Weikl TR Adv Colloid Interface Sci; 2014 Jun; 208():214-24. PubMed ID: 24703299 [TBL] [Abstract][Full Text] [Related]
11. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870 [TBL] [Abstract][Full Text] [Related]
12. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system. Tang H; Ye H; Zhang H; Zheng Y Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084 [TBL] [Abstract][Full Text] [Related]
13. Adhesion and Aggregation of Spherical Nanoparticles on Lipid Membranes. Laradji M; Kumar PBS; Spangler EJ Chem Phys Lipids; 2020 Nov; 233():104989. PubMed ID: 33120231 [TBL] [Abstract][Full Text] [Related]
14. Thermal-controlled cellular uptake of "hot" nanoparticles. Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374 [TBL] [Abstract][Full Text] [Related]
15. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer. Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246 [TBL] [Abstract][Full Text] [Related]
16. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. Chen T; Zhang Y; Li X; Li C; Lu T; Xiao S; Liang H J Chem Theory Comput; 2021 Dec; 17(12):7850-7861. PubMed ID: 34865469 [TBL] [Abstract][Full Text] [Related]
17. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774 [TBL] [Abstract][Full Text] [Related]
18. Cooperative wrapping of nanoparticles by membrane tubes. Raatz M; Lipowsky R; Weikl TR Soft Matter; 2014 May; 10(20):3570-7. PubMed ID: 24658648 [TBL] [Abstract][Full Text] [Related]
19. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Li Y; Kröger M; Liu WK Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104 [TBL] [Abstract][Full Text] [Related]
20. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions. Shimokawa N; Ito H; Higuchi Y Phys Rev E; 2019 Jul; 100(1-1):012407. PubMed ID: 31499808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]