BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28650068)

  • 1. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.
    Chen Z; Shen X; Wang J; Wang J; Yuan Q; Yan Y
    Biotechnol Bioeng; 2017 Nov; 114(11):2571-2580. PubMed ID: 28650068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.
    Katsuki N; Masuo S; Nukui N; Minakawa H; Takaya N
    J Gen Appl Microbiol; 2024 May; 69(6):301-308. PubMed ID: 37648467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput visual screening method for p-hydroxybenzoate hydroxylase to increase phenolic compounds biosynthesis.
    Chen Z; Chen T; Yu S; Huo YX
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):43. PubMed ID: 35501924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CipA-mediating enzyme self-assembly to enhance the biosynthesis of pyrogallol in Escherichia coli.
    Huo YX; Ren H; Yu H; Zhao L; Yu S; Yan Y; Chen Z
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10005-10015. PubMed ID: 30242435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.
    Lv X; Gu J; Wang F; Xie W; Liu M; Ye L; Yu H
    Biotechnol Bioeng; 2016 Dec; 113(12):2661-2669. PubMed ID: 27316379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Molecular Mechanism Underlying the High Catalytic Activity of
    Moriwaki Y; Yato M; Terada T; Saito S; Nukui N; Iwasaki T; Nishi T; Kawaguchi Y; Okamoto K; Arakawa T; Yamada C; Fushinobu S; Shimizu K
    Biochemistry; 2019 Nov; 58(45):4543-4558. PubMed ID: 31639299
    [No Abstract]   [Full Text] [Related]  

  • 7. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol Bioeng; 2017 Sep; 114(9):1928-1936. PubMed ID: 28498544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing an Artificial Pathway for De Novo Biosynthesis of Vanillyl Alcohol in Escherichia coli.
    Chen Z; Shen X; Wang J; Wang J; Zhang R; Rey JF; Yuan Q; Yan Y
    ACS Synth Biol; 2017 Sep; 6(9):1784-1792. PubMed ID: 28586214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and organization of pobA, the gene coding for p-hydroxybenzoate hydroxylase, an inducible enzyme from Pseudomonas aeruginosa.
    Entsch B; Nan Y; Weaich K; Scott KF
    Gene; 1988 Nov; 71(2):279-91. PubMed ID: 2465205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways.
    Kogure T; Suda M; Hiraga K; Inui M
    Metab Eng; 2021 May; 65():232-242. PubMed ID: 33238211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial synthesis of pyrogallol using genetically engineered Escherichia coli.
    Wang J; Shen X; Yuan Q; Yan Y
    Metab Eng; 2018 Jan; 45():134-141. PubMed ID: 29247864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A; Martínez JA; Millard P; Gosset G; Portais JC; Létisse F; Bolivar F
    Biotechnol Bioeng; 2017 Jun; 114(6):1319-1330. PubMed ID: 28186321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of Novel Biosynthetic Pathways for the Production of Salicyl Alcohol and Gentisyl Alcohol in Engineered Escherichia coli.
    Shen X; Wang J; Gall BK; Ferreira EM; Yuan Q; Yan Y
    ACS Synth Biol; 2018 Apr; 7(4):1012-1017. PubMed ID: 29570271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction.
    Liu X; An Y; Gao H
    Microb Cell Fact; 2024 Jun; 23(1):162. PubMed ID: 38824548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the shikimate pathway for microbial production of maleate from glycerol in engineered Escherichia coli.
    Sheng H; Jing Y; An N; Shen X; Sun X; Yan Y; Wang J; Yuan Q
    Biotechnol Bioeng; 2021 May; 118(5):1840-1850. PubMed ID: 33512000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.
    Lin Y; Sun X; Yuan Q; Yan Y
    Metab Eng; 2014 May; 23():62-9. PubMed ID: 24583236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Growth-Based, High-Throughput Selection Platform Enables Remodeling of 4-Hydroxybenzoate Hydroxylase Active Site.
    Maxel S; Aspacio D; King E; Zhang L; Acosta AP; Li H
    ACS Catal; 2020 Jun; 10(12):6969-6974. PubMed ID: 34295569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.
    Choi S; Kim HU; Kim TY; Lee SY
    Metab Eng; 2016 Nov; 38():264-273. PubMed ID: 27663752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.