These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28650145)
1. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates. Busa VF; Rector MJ; Russell R Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145 [TBL] [Abstract][Full Text] [Related]
2. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Jarmoskaite I; Bhaskaran H; Seifert S; Russell R Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474 [TBL] [Abstract][Full Text] [Related]
3. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
4. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Tijerina P; Bhaskaran H; Russell R Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070 [TBL] [Abstract][Full Text] [Related]
5. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Grohman JK; Del Campo M; Bhaskaran H; Tijerina P; Lambowitz AM; Russell R Biochemistry; 2007 Mar; 46(11):3013-22. PubMed ID: 17311413 [TBL] [Abstract][Full Text] [Related]
6. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related]
7. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. Jarmoskaite I; Tijerina P; Russell R J Biol Chem; 2021; 296():100132. PubMed ID: 33262215 [TBL] [Abstract][Full Text] [Related]
8. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866 [TBL] [Abstract][Full Text] [Related]
10. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins. Jarmoskaite I; Helmers AE; Russell R Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018 [TBL] [Abstract][Full Text] [Related]
11. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Mallam AL; Jarmoskaite I; Tijerina P; Del Campo M; Seifert S; Guo L; Russell R; Lambowitz AM Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12254-9. PubMed ID: 21746911 [TBL] [Abstract][Full Text] [Related]
12. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Rudolph MG; Klostermeier D Biol Chem; 2015 Aug; 396(8):849-65. PubMed ID: 25720120 [TBL] [Abstract][Full Text] [Related]
13. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Mohr S; Stryker JM; Lambowitz AM Cell; 2002 Jun; 109(6):769-79. PubMed ID: 12086675 [TBL] [Abstract][Full Text] [Related]
14. Toward a molecular understanding of RNA remodeling by DEAD-box proteins. Russell R; Jarmoskaite I; Lambowitz AM RNA Biol; 2013 Jan; 10(1):44-55. PubMed ID: 22995827 [TBL] [Abstract][Full Text] [Related]
15. Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712 [TBL] [Abstract][Full Text] [Related]
16. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. Pan C; Potratz JP; Cannon B; Simpson ZB; Ziehr JL; Tijerina P; Russell R PLoS Biol; 2014 Oct; 12(10):e1001981. PubMed ID: 25350280 [TBL] [Abstract][Full Text] [Related]
17. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. Saldanha R; Ellington A; Lambowitz AM J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500 [TBL] [Abstract][Full Text] [Related]
19. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics. Chadee AB; Bhaskaran H; Russell R J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030 [TBL] [Abstract][Full Text] [Related]
20. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Bhaskaran H; Russell R Nature; 2007 Oct; 449(7165):1014-8. PubMed ID: 17960235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]