BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28650167)

  • 1. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism.
    Chakraborty S; Jana B
    Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
    Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity.
    Pertaya N; Marshall CB; Celik Y; Davies PL; Braslavsky I
    Biophys J; 2008 Jul; 95(1):333-41. PubMed ID: 18339740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation.
    Pal P; Aich R; Chakraborty S; Jana B
    Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins.
    Aich R; Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2023 Jul; 127(27):6038-6048. PubMed ID: 37395194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice-binding mechanism of winter flounder antifreeze proteins.
    Cheng A; Merz KM
    Biophys J; 1997 Dec; 73(6):2851-73. PubMed ID: 9414201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    Langmuir; 2017 Jun; 33(22):5499-5510. PubMed ID: 28505449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
    Lee H
    J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchored clathrate waters bind antifreeze proteins to ice.
    Garnham CP; Campbell RL; Davies PL
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7363-7. PubMed ID: 21482800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity.
    Doucet D; Tyshenko MG; Kuiper MJ; Graether SP; Sykes BD; Daugulis AJ; Davies PL; Walker VK
    Eur J Biochem; 2000 Oct; 267(19):6082-8. PubMed ID: 10998070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature.
    Graether SP; Gagné SM; Spyracopoulos L; Jia Z; Davies PL; Sykes BD
    J Mol Biol; 2003 Apr; 327(5):1155-68. PubMed ID: 12662938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs.
    Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V
    J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface.
    Grabowska J; Kuffel A; Zielkiewicz J
    Phys Chem Chem Phys; 2018 Oct; 20(39):25365-25376. PubMed ID: 30260360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.