BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28650514)

  • 1. Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression.
    Ruiz-España S; Domingo J; Díaz-Parra A; Dura E; D'Ocón-Alcañiz V; Arana E; Moratal D
    Med Phys; 2017 Sep; 44(9):4695-4707. PubMed ID: 28650514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Preliminary results.
    Ruiz-Espana S; Domingo J; Diaz-Parra A; Dura E; D'Ocon-Alcaniz V; Arana E; Moratal D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2014-7. PubMed ID: 26736681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of atlas-based techniques for whole-body bone segmentation.
    Arabi H; Zaidi H
    Med Image Anal; 2017 Feb; 36():98-112. PubMed ID: 27871000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net.
    Serrador L; Villani FP; Moccia S; Santos CP
    Comput Med Imaging Graph; 2024 Apr; 113():102350. PubMed ID: 38340574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images.
    Banik S; Rangayyan RM; Boag GS
    J Digit Imaging; 2010 Jun; 23(3):301-22. PubMed ID: 19219504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.
    Chu C; Belavý DL; Armbrecht G; Bansmann M; Felsenberg D; Zheng G
    PLoS One; 2015; 10(11):e0143327. PubMed ID: 26599505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully automated level-set based segmentation method of thoracic and lumbar vertebral bodies in Computed Tomography images.
    Ruiz-España S; Díaz-Parra A; Arana E; Moratal D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3049-52. PubMed ID: 26736935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation.
    Korez R; Ibragimov B; Likar B; Pernuš F; Vrtovec T
    IEEE Trans Med Imaging; 2015 Aug; 34(8):1649-62. PubMed ID: 25585415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model.
    Martin S; Troccaz J; Daanenc V
    Med Phys; 2010 Apr; 37(4):1579-90. PubMed ID: 20443479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling.
    Fortunati V; Verhaart RF; van der Lijn F; Niessen WJ; Veenland JF; Paulides MM; van Walsum T
    Med Phys; 2013 Jul; 40(7):071905. PubMed ID: 23822442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images.
    Pei Y; Ai X; Zha H; Xu T; Ma G
    Med Phys; 2016 Sep; 43(9):5040. PubMed ID: 27587034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landmark-guided diffeomorphic demons algorithm and its application to automatic segmentation of the whole spine and pelvis in CT images.
    Hanaoka S; Masutani Y; Nemoto M; Nomura Y; Miki S; Yoshikawa T; Hayashi N; Ohtomo K; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):413-430. PubMed ID: 27905028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing Willmore flow into level set segmentation of spinal vertebrae.
    Lim PH; Bagci U; Bai L
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):115-22. PubMed ID: 23144025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-object Model-Based Multi-atlas Segmentation Constrained Grid Cut for Automatic Segmentation of Lumbar Vertebrae from CT Images.
    Yu W; Liu W; Tan L; Zhang S; Zheng G
    Adv Exp Med Biol; 2018; 1093():65-71. PubMed ID: 30306472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model.
    Gan Y; Xia Z; Xiong J; Zhao Q; Hu Y; Zhang J
    Med Phys; 2015 Jan; 42(1):14-27. PubMed ID: 25563244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Segmentation of the Paranasal Sinus from Computer Tomography Images Using a Probabilistic Atlas and a Fully Convolutional Network.
    Iwamoto Y; Xiong K; Kitamura T; Han XH; Matsushiro N; Nishimura H; Chen YW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2789-2792. PubMed ID: 31946472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.