BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28650559)

  • 1. The antibacterial activity and modes of LI-F type antimicrobial peptides against Bacillus cereus in vitro.
    Han J; Zhao S; Ma Z; Gao L; Liu H; Muhammad U; Lu Z; Lv F; Bie X
    J Appl Microbiol; 2017 Sep; 123(3):602-614. PubMed ID: 28650559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.
    Han J; Gao P; Zhao S; Bie X; Lu Z; Zhang C; Lv F
    J Proteomics; 2017 Jan; 150():130-140. PubMed ID: 27609309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of AMP-jsa9, a LI-F-type antimicrobial peptide produced by Paenibacillus polymyxa JSa-9, against Fusarium moniliforme.
    Han J; Wang F; Gao P; Ma Z; Zhao S; Lu Z; Lv F; Bie X
    Fungal Genet Biol; 2017 Jul; 104():45-55. PubMed ID: 28512016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antibacterial activity of LI-F type peptide against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and inhibition of infections in murine scalded epidermis.
    Han J; Ma Z; Gao P; Lu Z; Liu H; Gao L; Lu W; Ju X; Lv F; Zhao H; Bie X
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2301-2311. PubMed ID: 29372300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9.
    Deng Y; Lu Z; Bi H; Lu F; Zhang C; Bie X
    Peptides; 2011 Sep; 32(9):1917-23. PubMed ID: 21864605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis SCK-2 against Bacillus cereus.
    Yeo IC; Lee NK; Cha CJ; Hahm YT
    J Biosci Bioeng; 2011 Oct; 112(4):338-44. PubMed ID: 21783410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin against Bacillus cereus.
    Du H; Yang J; Lu X; Lu Z; Bie X; Zhao H; Zhang C; Lu F
    J Agric Food Chem; 2018 May; 66(18):4716-4724. PubMed ID: 29690762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition and induction of stress protein, GroEL, of Bacillus cereus exposed to antibacterial peptide isolated from Bacillus subtilis SC-8.
    Lee NK; Yeo IC; Park JW; Hahm YT
    Appl Biochem Biotechnol; 2011 Sep; 165(1):235-42. PubMed ID: 21544555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability.
    Wang G; Feng G; Snyder AB; Manns DC; Churey JJ; Worobo RW
    FEMS Microbiol Lett; 2014 Aug; 357(1):69-76. PubMed ID: 24891232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial Activity and Mode of Action of β-caryophyllene on
    Moo CL; Yang SK; Osman MA; Yuswan MH; Loh JY; Lim WM; Lim SH; Lai KS
    Pol J Microbiol; 2020; 69(1):1-6. PubMed ID: 32162852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusaricidin-Type Compounds Create Pores in Mitochondrial and Plasma Membranes of Mammalian Cells.
    Mikkola R; Andersson M; Kharechkina E; Kruglova S; Kruglov A
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical cationic antimicrobial peptide length and its impact on membrane disruption.
    Juba ML; Porter DK; Williams EH; Rodriguez CA; Barksdale SM; Bishop BM
    Biochim Biophys Acta; 2015 May; 1848(5):1081-91. PubMed ID: 25660753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial characterization of bacteriocin-like compounds from two strains of Bacillus cereus with biological activity against Paenibacillus larvae, the causal agent of American Foulbrood disease.
    Minnaard J; Alippi AM
    Lett Appl Microbiol; 2016 Dec; 63(6):442-449. PubMed ID: 27589675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common Mechanism of Cross-Resistance Development in Pathogenic Bacteria Bacillus cereus Against Alamethicin and Pediocin Involves Alteration in Lipid Composition.
    Meena S; Mehla J; Kumar R; Sood SK
    Curr Microbiol; 2016 Oct; 73(4):534-41. PubMed ID: 27378130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation.
    Fernandes JC; Eaton P; Gomes AM; Pintado ME; Xavier Malcata F
    Ultramicroscopy; 2009 Jul; 109(8):854-60. PubMed ID: 19362422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a broad range antimicrobial substance from Bacillus cereus.
    Risøen PA; Rønning P; Hegna IK; Kolstø AB
    J Appl Microbiol; 2004; 96(4):648-55. PubMed ID: 15012801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa.
    Deng Y; Lu Z; Lu F; Zhang C; Wang Y; Zhao H; Bie X
    J Microbiol Methods; 2011 Jun; 85(3):175-82. PubMed ID: 21376758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.
    Eom JS; Lee SY; Choi HS
    J Food Sci; 2014 Nov; 79(11):M2279-87. PubMed ID: 25359543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus.
    Xu Z; Yang Q; Zhu Y
    Food Res Int; 2022 Jan; 151():110840. PubMed ID: 34980379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus cereus Response to a Proanthocyanidin Trimer, a Transcriptional and Functional Analysis.
    Tamura T; Ozawa M; Tanaka N; Arai S; Mura K
    Curr Microbiol; 2016 Jul; 73(1):115-23. PubMed ID: 27061585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.