These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 28650636)

  • 1. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pK
    Slocum JD; First JT; Webb LJ
    J Phys Chem B; 2017 Jul; 121(28):6799-6812. PubMed ID: 28650636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.
    Slocum JD; Webb LJ
    J Am Chem Soc; 2016 May; 138(20):6561-70. PubMed ID: 27128688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMOEBA Force Field Trajectories Improve Predictions of Accurate p
    Lin YC; Ren P; Webb LJ
    J Phys Chem B; 2022 Oct; 126(40):7806-7817. PubMed ID: 36194474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long- and Short-Range Electrostatic Fields in GFP Mutants: Implications for Spectral Tuning.
    Drobizhev M; Callis PR; Nifosì R; Wicks G; Stoltzfus C; Barnett L; Hughes TE; Sullivan P; Rebane A
    Sci Rep; 2015 Aug; 5():13223. PubMed ID: 26286372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond p
    First JT; Novelli ET; Webb LJ
    J Phys Chem B; 2020 Apr; 124(16):3387-3399. PubMed ID: 32212657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2014 Jul; 118(28):7692-702. PubMed ID: 24446740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.
    Fafarman AT; Sigala PA; Schwans JP; Fenn TD; Herschlag D; Boxer SG
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E299-308. PubMed ID: 22308339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins.
    Suydam IT; Boxer SG
    Biochemistry; 2003 Oct; 42(41):12050-5. PubMed ID: 14556636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic fields near the active site of human aldose reductase: 1. New inhibitors and vibrational stark effect measurements.
    Webb LJ; Boxer SG
    Biochemistry; 2008 Feb; 47(6):1588-98. PubMed ID: 18205401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2013 Oct; 117(39):11473-89. PubMed ID: 24041016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.
    Meyer T; Knapp EW
    J Chem Theory Comput; 2015 Jun; 11(6):2827-40. PubMed ID: 26575575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2015 Nov; 119(44):13945-57. PubMed ID: 26375183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting mutation-induced Stark shifts in the active site of a protein with a polarized force field.
    Wang X; He X; Zhang JZ
    J Phys Chem A; 2013 Jul; 117(29):6015-23. PubMed ID: 23517423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.
    Wang X; Zhang JZ; He X
    J Chem Phys; 2015 Nov; 143(18):184111. PubMed ID: 26567650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric fields at the active site of an enzyme: direct comparison of experiment with theory.
    Suydam IT; Snow CD; Pande VS; Boxer SG
    Science; 2006 Jul; 313(5784):200-4. PubMed ID: 16840693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction.
    Stafford AJ; Ensign DL; Webb LJ
    J Phys Chem B; 2010 Nov; 114(46):15331-44. PubMed ID: 20964430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMOEBA Force Field Predicts Accurate Hydrogen Bond Counts of Nitriles in SNase by Revealing Water-Protein Interaction in Vibrational Absorption Frequencies.
    Lin YC; Ren P; Webb LJ
    J Phys Chem B; 2023 Jun; 127(25):5609-5619. PubMed ID: 37339399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.