These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28650640)

  • 21. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter.
    Rose AL; Waite TD
    Environ Sci Technol; 2002 Feb; 36(3):433-44. PubMed ID: 11871559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H
    Jia P; Zhou Y; Zhang X; Zhang Y; Dai R
    Water Res; 2018 Mar; 131():122-130. PubMed ID: 29277080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of cyanobacteria and control of algal organic matter by simultaneous oxidation and coagulation - comparing the H
    Zhang X; Ma Y; Tang T; Xiong Y; Dai R
    Sci Total Environ; 2020 Jun; 720():137653. PubMed ID: 32325594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical properties of straw-derived dissolved organic matter and growth inhibition of Microcystis aeruginosa by straw-derived dissolved organic matter via photo-generated hydrogen peroxide.
    Ma H; Huang L; Zhang J; Shi D; Yang J
    Environ Pollut; 2018 Nov; 242(Pt A):760-768. PubMed ID: 30031309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light- and H
    Ma C; Huang R; Huangfu X; Ma J; He Q
    Environ Sci Technol; 2022 May; 56(9):5530-5541. PubMed ID: 35435677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sunlight-Mediated Reductive Transformation of Thallium(III) in Acidic Natural Organic Matter Solutions: Mechanisms and Kinetic Modeling.
    Ma C; Huang R; Huangfu X; Ma J
    Environ Sci Technol; 2023 May; 57(19):7466-7477. PubMed ID: 37134314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photochemistry of iron in aquatic environments.
    Lueder U; Jørgensen BB; Kappler A; Schmidt C
    Environ Sci Process Impacts; 2020 Jan; 22(1):12-24. PubMed ID: 31904051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light.
    Fan G; Zhou J; Zheng X; Luo J; Hong L; Qu F
    Chemosphere; 2020 Jan; 239():124721. PubMed ID: 31493752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of iron species in the photo-transformation of phenol in artificial and natural seawater.
    Calza P; Massolino C; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes - Implications for light-influenced coastal freshwater and marine sediments.
    Lueder U; Jørgensen BB; Maisch M; Schmidt C; Kappler A
    Sci Total Environ; 2022 Mar; 814():152767. PubMed ID: 34982989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the effect of Fe(III) on proliferation of Microcystis aeruginosa at high nitrate and low chlorophyll condition.
    Chen R; Lei Z; Ji J; Wang X; Li YY; Yang Y; Zhang L; Xue T
    J Environ Sci (China); 2017 Feb; 52():105-110. PubMed ID: 28254028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competitive Effects of Calcium and Magnesium Ions on the Photochemical Transformation and Associated Cellular Uptake of Iron by the Freshwater Cyanobacterial Phytoplankton Microcystis aeruginosa.
    Fujii M; Yeung AC; Waite TD
    Environ Sci Technol; 2015 Aug; 49(15):9133-42. PubMed ID: 26132788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control.
    Ma M; Liu R; Liu H; Qu J
    Water Res; 2014 Nov; 65():73-84. PubMed ID: 25090625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Citric acid-induced photochemical behavior of Cr(III)-substituted ferrihydrite: Fe and Cr release, mineral transformation and reactive oxygen species generation.
    Li F; Li M; Liu Y; Li F; Tian J
    Sci Total Environ; 2024 May; 926():171778. PubMed ID: 38513872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photochemistry of organic iron(III) complexing ligands in oceanic systems.
    Barbeau K
    Photochem Photobiol; 2006; 82(6):1505-16. PubMed ID: 16968114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox cycling of iron by Abeta42.
    Khan A; Dobson JP; Exley C
    Free Radic Biol Med; 2006 Feb; 40(4):557-69. PubMed ID: 16458186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous photoinduced generation of Fe(2+) and H2O2 in rivers: An indicator for photo-Fenton reaction.
    Mostofa KMG; Sakugawa H
    J Environ Sci (China); 2016 Sep; 47():34-38. PubMed ID: 27593270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.