BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28650665)

  • 1. Understanding the Oxidative Stability of Antifouling Polymer Brushes.
    Du Y; Gao J; Chen T; Zhang C; Ji J; Xu ZK
    Langmuir; 2017 Jul; 33(29):7298-7304. PubMed ID: 28650665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects.
    Lin CH; Luo SC
    Langmuir; 2021 Oct; 37(42):12476-12486. PubMed ID: 34648298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface.
    Ashraf J; Lau S; Akbarinejad A; Evans CW; Williams DE; Barker D; Travas-Sejdic J
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes.
    He Y; Wan X; Lin W; Li J; Li Z; Luo F; Li J; Tan H; Fu Q
    Biomater Sci; 2020 Dec; 8(24):6890-6902. PubMed ID: 32672290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture.
    Quintana R; Gosa M; JaƄczewski D; Kutnyanszky E; Vancso GJ
    Langmuir; 2013 Aug; 29(34):10859-67. PubMed ID: 23876125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations.
    Song X; Man J; Qiu Y; Wang J; Li R; Zhang Y; Cui G; Li J; Li J; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17145-17162. PubMed ID: 38534071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation.
    Guntnur RT; Muzzio N; Morales M; Romero G
    Soft Matter; 2021 Mar; 17(9):2530-2538. PubMed ID: 33508060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring.
    Navarro LA; Enciso AE; Matyjaszewski K; Zauscher S
    J Am Chem Soc; 2019 Feb; 141(7):3100-3109. PubMed ID: 30674187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus.
    He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q
    Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes.
    Zhuang P; Dirani A; Glinel K; Jonas AM
    Langmuir; 2016 Apr; 32(14):3433-44. PubMed ID: 27003634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA-
    Kim I; Kang SM
    Langmuir; 2024 Feb; 40(6):3213-3221. PubMed ID: 38314692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate.
    Nakano H; Noguchi Y; Kakinoki S; Yamakawa M; Osaka I; Iwasaki Y
    ACS Appl Bio Mater; 2020 Feb; 3(2):1071-1078. PubMed ID: 35019309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.
    Zhao YF; Zhang PB; Sun J; Liu CJ; Yi Z; Zhu LP; Xu YY
    J Colloid Interface Sci; 2015 Jun; 448():380-8. PubMed ID: 25752579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions.
    Li W; Cao F; He C; Ohno K; Ngai T
    Langmuir; 2018 Jul; 34(30):8798-8806. PubMed ID: 29983064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.
    Edmondson S; Nguyen NT; Lewis AL; Armes SP
    Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.
    Zhang Z; Moxey M; Alswieleh A; Morse AJ; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2016 May; 32(20):5048-57. PubMed ID: 27133955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.