BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28650678)

  • 1. An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data.
    Firoozbakht F; Rezaeian I; D'agnillo M; Porter L; Rueda L; Ngom A
    J Comput Biol; 2017 Aug; 24(8):756-766. PubMed ID: 28650678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.
    Chen J; Xu J; Li Y; Zhang J; Chen H; Lu J; Wang Z; Zhao X; Xu K; Li Y; Li X; Zhang Y
    Oncotarget; 2017 Feb; 8(6):10171-10184. PubMed ID: 28052038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of subtype-specific breast cancer surface protein biomarkers via a novel transcriptomics approach.
    Mercatelli D; Formaggio F; Caprini M; Holding A; Giorgi FM
    Biosci Rep; 2021 Dec; 41(12):. PubMed ID: 34750607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of significantly mutated subnetworks in the breast cancer genome.
    Ajwad R; Domaratzki M; Liu Q; Feizi N; Hu P
    Sci Rep; 2021 Jan; 11(1):642. PubMed ID: 33436820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling.
    Li D; Xia H; Li ZY; Hua L; Li L
    Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLassonet: Identifying Discriminative Gene Sets Among Molecular Subtypes of Breast Cancer.
    Liu S; Zhang Y; Shang X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1905-1916. PubMed ID: 36346852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes.
    Dutta B; Pusztai L; Qi Y; André F; Lazar V; Bianchini G; Ueno N; Agarwal R; Wang B; Shiang CY; Hortobagyi GN; Mills GB; Symmans WF; Balázsi G
    Br J Cancer; 2012 Mar; 106(6):1107-16. PubMed ID: 22343619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of Prognostic Factors in Early-Onset Breast Cancer.
    Yu Z; He Q; Xu G
    Technol Cancer Res Treat; 2020; 19():1533033819893670. PubMed ID: 32028860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping.
    Sherafatian M
    Gene; 2018 Nov; 677():111-118. PubMed ID: 30055304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoglobulin superfamily genes are novel prognostic biomarkers for breast cancer.
    Li Y; Guo M; Fu Z; Wang P; Zhang Y; Gao Y; Yue M; Ning S; Li D
    Oncotarget; 2017 Jan; 8(2):2444-2456. PubMed ID: 27911271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative analysis of somatic mutations and transcriptomic data to functionally stratify breast cancer patients.
    Zhang J; Abrams Z; Parvin JD; Huang K
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):513. PubMed ID: 27556157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer.
    Judes G; Rifaï K; Daures M; Dubois L; Bignon YJ; Penault-Llorca F; Bernard-Gallon D
    Cancer Lett; 2016 Nov; 382(1):77-85. PubMed ID: 26965997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein interaction network (PIN)-based breast cancer subsystem identification and activation measurement for prognostic modeling.
    Lim S; Park Y; Hur B; Kim M; Han W; Kim S
    Methods; 2016 Nov; 110():81-89. PubMed ID: 27329435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.
    Karthik GM; Rantalainen M; Stålhammar G; Lövrot J; Ullah I; Alkodsi A; Ma R; Wedlund L; Lindberg J; Frisell J; Bergh J; Hartman J
    BMC Cancer; 2017 Nov; 17(1):802. PubMed ID: 29187174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-analysis of Cancer Gene Profiling Data.
    Roy J; Winter C; Schroeder M
    Methods Mol Biol; 2016; 1381():211-22. PubMed ID: 26667463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.