These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28650804)

  • 1. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.
    Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-shift Tolerant Myoelectric Movement-pattern Classification using Extreme Learning for Adaptive Sparse Representations.
    Betthauser JL; Osborn LE; Kaliki RR; Thakor NV
    IEEE Biomed Circuits Syst Conf; 2017 Oct; 2017():. PubMed ID: 38226345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.