These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28650804)

  • 21. Motion recognition for simultaneous control of multifunctional transradial prostheses.
    Jiang N; Tian L; Fang P; Dai Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards better understanding and reducing the effect of limb position on myoelectric upper-limb prostheses.
    Masters MR; Smith RJ; Soares AB; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2577-80. PubMed ID: 25570517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study.
    Xu Y; Zhang D; Wang Y; Feng J; Xu W
    J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive myoelectric pattern recognition for arm movement in different positions using advanced online sequential extreme learning machine.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():900-903. PubMed ID: 28268469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards reducing the impacts of unwanted movements on identification of motion intentions.
    Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G
    J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating User and Machine Learning in Short- and Long-Term Pattern Recognition-Based Myoelectric Control.
    Lv B; Chai G; Sheng X; Ding H; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():777-785. PubMed ID: 33861704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation.
    Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control.
    Amsüss S; Goebel PM; Jiang N; Graimann B; Paredes L; Farina D
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1167-76. PubMed ID: 24658241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke.
    Lu Z; Tong KY; Zhang X; Li S; Zhou P
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):365-372. PubMed ID: 29993410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grasp specific and user friendly interface design for myoelectric hand prostheses.
    Mohammadi A; Lavranos J; Howe R; Choong P; Oetomo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1621-1626. PubMed ID: 28814052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.