BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28651131)

  • 1. Formic acid production using a microbial electrolysis desalination and chemical-production cell.
    Lu Y; Luo H; Yang K; Liu G; Zhang R; Li X; Ye B
    Bioresour Technol; 2017 Nov; 243():118-125. PubMed ID: 28651131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode.
    Ye B; Lu Y; Luo H; Liu G; Zhang R
    Bioresour Technol; 2018 Mar; 251():403-406. PubMed ID: 29276112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.
    Chen S; Liu G; Zhang R; Qin B; Luo Y; Hou Y
    Bioresour Technol; 2012 Jul; 116():507-11. PubMed ID: 22608915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.
    Ye B; Luo H; Lu Y; Liu G; Zhang R; Li X
    Bioresour Technol; 2017 Nov; 244(Pt 1):913-919. PubMed ID: 28847080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.
    Chen S; Liu G; Zhang R; Qin B; Luo Y
    Environ Sci Technol; 2012 Feb; 46(4):2467-72. PubMed ID: 22242642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.
    Liu G; Zhou Y; Luo H; Cheng X; Zhang R; Teng W
    Bioresour Technol; 2015 Dec; 198():87-93. PubMed ID: 26367771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High current density with spatial distribution of Geobacter in anodic biofilm of the microbial electrolysis desalination and chemical-production cell with enlarged volumetric anode.
    Lan J; Ren Y; Luo H; Wang X; Liu G; Zhang R
    Sci Total Environ; 2022 Jul; 831():154798. PubMed ID: 35367555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance nanofiltration concentrate treatment by a five-chamber bioelectrochemical system.
    Liang J; Zhong F; Lin H; Ma X; Lan J; Ye B; Zhang L
    J Environ Manage; 2023 Oct; 344():118432. PubMed ID: 37393875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration.
    Zhu X; Logan BE
    Bioresour Technol; 2014 May; 159():24-9. PubMed ID: 24632437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.
    Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP
    Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.
    Zhang Y; Angelidaki I
    Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution.
    Song YH; Hidayat S; Kim HK; Park JY
    Bioresour Technol; 2016 Jun; 210():56-60. PubMed ID: 26888336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination.
    Luo H; Xu P; Roane TM; Jenkins PE; Ren Z
    Bioresour Technol; 2012 Feb; 105():60-6. PubMed ID: 22178493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.