These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28651628)

  • 21. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface.
    Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H
    Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery.
    Vuckovic A; Osuagwu BA
    Clin Neurophysiol; 2013 Aug; 124(8):1586-95. PubMed ID: 23535455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperation in mind: Motor imagery of joint and single actions is represented in different brain areas.
    Wriessnegger SC; Steyrl D; Koschutnig K; Müller-Putz GR
    Brain Cogn; 2016 Nov; 109():19-25. PubMed ID: 27632555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-Optimized Local Region Common Spatial Pattern Approach for Motor Imagery Classification.
    Park Y; Chung W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1378-1388. PubMed ID: 31199263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor imagery and mental fatigue: inter-relationship and EEG based estimation.
    Talukdar U; Hazarika SM; Gan JQ
    J Comput Neurosci; 2019 Feb; 46(1):55-76. PubMed ID: 30488148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces.
    Dong E; Li C; Li L; Du S; Belkacem AN; Chen C
    Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covert Verb Reading Contributes to Signal Classification of Motor Imagery in BCI.
    Zhang H; Sun Y; Li J; Wang F; Wang Z
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):45-50. PubMed ID: 28981418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O
    J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.