These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28651645)

  • 1. Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation.
    Böttrich M; Tanskanen JMA; Hyttinen JAK
    Biomed Eng Online; 2017 Jun; 16(1):85. PubMed ID: 28651645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays.
    Seidel D; Obendorf J; Englich B; Jahnke HG; Semkova V; Haupt S; Girard M; Peschanski M; Brüstle O; Robitzki AA
    Biosens Bioelectron; 2016 Dec; 86():277-286. PubMed ID: 27387257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the cell-electrode interface noise for microelectrode arrays.
    Guo J; Yuan J; Chan M
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):605-13. PubMed ID: 23853261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel 384-multiwell microelectrode array for the impedimetric monitoring of Tau protein induced neurodegenerative processes.
    Jahnke HG; Krinke D; Seidel D; Lilienthal K; Schmidt S; Azendorf R; Fischer M; Mack T; Striggow F; Althaus H; Schober A; Robitzki AA
    Biosens Bioelectron; 2017 Feb; 88():78-84. PubMed ID: 27506337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved electrode positions for local impedance measurements in the lung-a simulation study.
    Orschulik J; Petkau R; Wartzek T; Hochhausen N; Czaplik M; Leonhardt S; Teichmann D
    Physiol Meas; 2016 Dec; 37(12):2111-2129. PubMed ID: 27811407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-field driven assembly of live bacterial cell microarrays for rapid phenotypic assessment and cell viability testing.
    Goel M; Verma A; Gupta S
    Biosens Bioelectron; 2018 Jul; 111():159-165. PubMed ID: 29679892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS
    Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost Impedance Camera for Cell Distribution Monitoring.
    Tang B; Liu M; Dietzel A
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study.
    Joucla S; Yvert B
    PLoS One; 2009; 4(3):e4828. PubMed ID: 19279677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls.
    Chang WC; Sretavan DW
    Biosens Bioelectron; 2009 Aug; 24(12):3600-7. PubMed ID: 19535240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental factors effecting stability of Electrochemical Impedance Spectroscopy Measurements.
    Koo B; Weiland J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2949-2952. PubMed ID: 30441018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individually addressable microelectrode arrays fabricated with gold-coated pencil graphite particles for multiplexed and high sensitive impedance immunoassays.
    Zhang Y; Wang H; Nie J; Zhang Y; Shen G; Yu R
    Biosens Bioelectron; 2009 Sep; 25(1):34-40. PubMed ID: 19559589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of stable and reproducible biosensors based on electrochemical impedance spectroscopy: three-electrode versus two-electrode setup.
    Ianeselli L; Grenci G; Callegari C; Tormen M; Casalis L
    Biosens Bioelectron; 2014 May; 55():1-6. PubMed ID: 24355458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System.
    Viswam V; Bounik R; Shadmani A; Dragas J; Urwyler C; Boos JA; Obien MEJ; Muller J; Chen Y; Hierlemann A
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1356-1368. PubMed ID: 30418922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.