These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28652208)

  • 1. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins.
    Haddad JF; Yang Y; Yeung S; Couture JF
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1605-1612. PubMed ID: 28652208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary uses of small angle X-ray scattering and X-ray crystallography.
    Pillon MC; Guarné A
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1623-1630. PubMed ID: 28743534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
    Drohat AC; Amburgey JC; Abildgaard F; Starich MR; Baldisseri D; Weber DJ
    Biochemistry; 1996 Sep; 35(36):11577-88. PubMed ID: 8794737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.
    Modi V; Lama D; Sankararamakrishnan R
    J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of the structure of the four-alpha-helix bundle in proteins.
    Chou KC; Maggiora GM; Némethy G; Scheraga HA
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4295-9. PubMed ID: 3380793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural biology of the Bcl-2 family of proteins.
    Petros AM; Olejniczak ET; Fesik SW
    Biochim Biophys Acta; 2004 Mar; 1644(2-3):83-94. PubMed ID: 14996493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of core-packing on the structure, function, and mechanics of a four-helix-bundle protein ROP.
    Ceruso MA; Grottesi A; Di Nola A
    Proteins; 1999 Sep; 36(4):436-46. PubMed ID: 10450085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of the volatile anesthetic halothane to the hydrophobic core of a tetra-alpha-helix-bundle protein.
    Johansson JS; Rabanal F; Dutton PL
    J Pharmacol Exp Ther; 1996 Oct; 279(1):56-61. PubMed ID: 8858975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-alpha-helix bundle with designed anesthetic binding pockets. Part I: structural and dynamical analyses.
    Ma D; Brandon NR; Cui T; Bondarenko V; Canlas C; Johansson JS; Tang P; Xu Y
    Biophys J; 2008 Jun; 94(11):4454-63. PubMed ID: 18310240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong electrostatic loop-helix interactions in bundle motif protein structures.
    Chou KC; Zheng C
    Biophys J; 1992 Sep; 63(3):682-8. PubMed ID: 1330035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the molecular architectures of chromatin-modifying complexes.
    Setiaputra DT; Yip CK
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1613-1622. PubMed ID: 28652207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The helix bundle: a reversible lipid binding motif.
    Narayanaswami V; Kiss RS; Weers PM
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):123-33. PubMed ID: 19770066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helix-helix interactions and their impact on protein motifs and assemblies.
    Kurochkina N
    J Theor Biol; 2010 May; 264(2):585-92. PubMed ID: 20202472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of stabilization centers in 4 helix bundle proteins.
    Fuxreiter M; Simon I
    Proteins; 2002 Aug; 48(2):320-6. PubMed ID: 12112699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
    Eilers M; Patel AB; Liu W; Smith SO
    Biophys J; 2002 May; 82(5):2720-36. PubMed ID: 11964258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus.
    Narayana N; Hua Q; Weiss MA
    J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.