These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28652262)

  • 1. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
    Wase N; Tu B; Allen JW; Black PN; DiRusso CC
    Plant Physiol; 2017 Aug; 174(4):2146-2165. PubMed ID: 28652262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169.
    Allen JW; Tevatia R; Demirel Y; DiRusso CC; Black PN
    PLoS One; 2018; 13(9):e0204505. PubMed ID: 30261009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of Chlamydomonas Metabolism Using Synthetic Inducers Results in Lipid Storage during Growth.
    Wase N; Tu B; Rasineni GK; Cerny R; Grove R; Adamec J; Black PN; DiRusso CC
    Plant Physiol; 2019 Nov; 181(3):1029-1049. PubMed ID: 31501300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii.
    Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H
    Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.
    Wase N; Black PN; Stanley BA; DiRusso CC
    J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.
    Liu B; Vieler A; Li C; Daniel Jones A; Benning C
    Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas.
    Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H
    J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relationship of Triacylglycerol and Starch Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas reinhardtii.
    Juergens MT; Disbrow B; Shachar-Hill Y
    Plant Physiol; 2016 Aug; 171(4):2445-57. PubMed ID: 27325664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.
    Hung CH; Kanehara K; Nakamura Y
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.
    Yilancioglu K; Cokol M; Pastirmaci I; Erman B; Cetiner S
    PLoS One; 2014; 9(3):e91957. PubMed ID: 24651514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids.
    Légeret B; Schulz-Raffelt M; Nguyen HM; Auroy P; Beisson F; Peltier G; Blanc G; Li-Beisson Y
    Plant Cell Environ; 2016 Apr; 39(4):834-47. PubMed ID: 26477535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.
    Iwai M; Ikeda K; Shimojima M; Ohta H
    Plant Biotechnol J; 2014 Aug; 12(6):808-19. PubMed ID: 24909748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.
    Gargouri M; Park JJ; Holguin FO; Kim MJ; Wang H; Deshpande RR; Shachar-Hill Y; Hicks LM; Gang DR
    J Exp Bot; 2015 Aug; 66(15):4551-66. PubMed ID: 26022256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.
    Cakmak T; Angun P; Demiray YE; Ozkan AD; Elibol Z; Tekinay T
    Biotechnol Bioeng; 2012 Aug; 109(8):1947-57. PubMed ID: 22383222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in
    Jang CH; Lee G; Park YC; Kim KH; Lee DY
    J Microbiol Biotechnol; 2017 Jun; 27(6):1150-1156. PubMed ID: 28372038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.
    Goncalves EC; Wilkie AC; Kirst M; Rathinasabapathi B
    Plant Biotechnol J; 2016 Aug; 14(8):1649-60. PubMed ID: 26801206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
    Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC
    Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of filamentous green algae as feedstocks for biofuel production.
    Zhang W; Zhao Y; Cui B; Wang H; Liu T
    Bioresour Technol; 2016 Nov; 220():407-413. PubMed ID: 27598569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.