These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 28652341)
1. High-speed acoustic communication by multiplexing orbital angular momentum. Shi C; Dubois M; Wang Y; Zhang X Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7250-7253. PubMed ID: 28652341 [TBL] [Abstract][Full Text] [Related]
2. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications. Zhou H; Su X; Minoofar A; Zhang R; Zou K; Song H; Pang K; Song H; Hu N; Zhao Z; Almaiman A; Zach S; Tur M; Molisch AF; Sasaki H; Lee D; Willner AE Opt Express; 2022 Jul; 30(14):25418-25432. PubMed ID: 36237073 [TBL] [Abstract][Full Text] [Related]
3. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Yue Y; Huang H; Ahmed N; Yan Y; Ren Y; Xie G; Rogawski D; Tur M; Willner AE Opt Lett; 2013 Dec; 38(23):5118-21. PubMed ID: 24281524 [TBL] [Abstract][Full Text] [Related]
4. Orbital Angular Momentum Multiplexing in Space-Time Thermoacoustic Metasurfaces. Jia Y; Liu Y; Hu B; Xiong W; Bai Y; Cheng Y; Wu D; Liu X; Christensen J Adv Mater; 2022 Jul; 34(29):e2202026. PubMed ID: 35661432 [TBL] [Abstract][Full Text] [Related]
5. Spectrum Decomposition-Based Orbital Angular Momentum Communication of Acoustic Vortex Beams Using Single-Ring Transceiver Arrays. Guo G; Li X; Wang Q; Li Y; Chu H; Ma Q; Tu J; Zhang D IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1399-1407. PubMed ID: 33108285 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Willner AE; Ren Y; Xie G; Yan Y; Li L; Zhao Z; Wang J; Tur M; Molisch AF; Ashrafi S Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069770 [TBL] [Abstract][Full Text] [Related]
7. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Yan Y; Xie G; Lavery MP; Huang H; Ahmed N; Bao C; Ren Y; Cao Y; Li L; Zhao Z; Molisch AF; Tur M; Padgett MJ; Willner AE Nat Commun; 2014 Sep; 5():4876. PubMed ID: 25224763 [TBL] [Abstract][Full Text] [Related]
8. The Limits of Effective Degrees of Freedom in UCA based Orbital Angular Momentum Multiplexed Communications. Li Z; Qu F; Wei Y; Yang G; Xu W; Xu J Sci Rep; 2020 Mar; 10(1):5216. PubMed ID: 32251300 [TBL] [Abstract][Full Text] [Related]
9. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method. Li L; Liu B; Guo Z J Acoust Soc Am; 2024 May; 155(5):3195-3205. PubMed ID: 38738938 [TBL] [Abstract][Full Text] [Related]
10. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Huang H; Xie G; Yan Y; Ahmed N; Ren Y; Yue Y; Rogawski D; Willner MJ; Erkmen BI; Birnbaum KM; Dolinar SJ; Lavery MP; Padgett MJ; Tur M; Willner AE Opt Lett; 2014 Jan; 39(2):197-200. PubMed ID: 24562105 [TBL] [Abstract][Full Text] [Related]
11. Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain. Zhang Y; Chen MLN; Jun Jiang L Opt Express; 2019 Sep; 27(20):27702-27711. PubMed ID: 31684533 [TBL] [Abstract][Full Text] [Related]
13. Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array. Xie G; Zhao Z; Yan Y; Li L; Ren Y; Ahmed N; Cao Y; Willner AJ; Bao C; Wang Z; Liu C; Ziyadi M; Talwar S; Sajuyigbe S; Ashrafi S; Tur M; Molisch AF; Willner AE Sci Rep; 2016 Nov; 6():37078. PubMed ID: 27833168 [TBL] [Abstract][Full Text] [Related]
14. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Liu X; Deng D; Yang Z; Li Y Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067905 [TBL] [Abstract][Full Text] [Related]
15. Polarization-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography. Zhou H; Sain B; Wang Y; Schlickriede C; Zhao R; Zhang X; Wei Q; Li X; Huang L; Zentgraf T ACS Nano; 2020 May; 14(5):5553-5559. PubMed ID: 32348122 [TBL] [Abstract][Full Text] [Related]
16. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Zhu L; Zhu G; Wang A; Wang L; Ai J; Chen S; Du C; Liu J; Yu S; Wang J Opt Lett; 2018 Apr; 43(8):1890-1893. PubMed ID: 29652391 [TBL] [Abstract][Full Text] [Related]
17. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Guan B; Scott RP; Qin C; Fontaine NK; Su T; Ferrari C; Cappuzzo M; Klemens F; Keller B; Earnshaw M; Yoo SJ Opt Express; 2014 Jan; 22(1):145-56. PubMed ID: 24514976 [TBL] [Abstract][Full Text] [Related]
18. Extending orbital angular momentum multiplexing to radially high orders for massive mode channels in fiber transmission. Kong A; Lei T; Wang D; Tu J; Shen L; Zhang L; Luo J; Fang J; Zhang W; Yuna X Opt Lett; 2023 Jul; 48(14):3717-3720. PubMed ID: 37450733 [TBL] [Abstract][Full Text] [Related]
19. High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface. Li Y; Xia Q; Yang J; Deng G; Yin Z Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203090 [TBL] [Abstract][Full Text] [Related]
20. Asymmetrical bidirectional VLC based on beam homogenizer OAM generation technology. Chou HH; Liu KY Opt Lett; 2021 Nov; 46(21):5381-5384. PubMed ID: 34724481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]