These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 2865256)
1. The role of tightly bound ADP on chloroplast ATPase. Feldman RI; Boyer PD J Biol Chem; 1985 Oct; 260(24):13088-94. PubMed ID: 2865256 [TBL] [Abstract][Full Text] [Related]
2. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
3. Active/inactive state transitions of the chloroplast F1 ATPase are induced by a slow binding and release of Mg2+. Relationship to catalysis and control of F1 ATPases. Guerrero KJ; Xue ZX; Boyer PD J Biol Chem; 1990 Sep; 265(27):16280-7. PubMed ID: 2144528 [TBL] [Abstract][Full Text] [Related]
4. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism. Du ZY; Boyer PD Biochemistry; 1990 Jan; 29(2):402-7. PubMed ID: 2137348 [TBL] [Abstract][Full Text] [Related]
5. Further characterization of nucleotide binding sites on chloroplast coupling factor one. Bruist MF; Hammes GG Biochemistry; 1981 Oct; 20(22):6298-305. PubMed ID: 6458326 [TBL] [Abstract][Full Text] [Related]
6. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Digel JG; Moore ND; McCarty RE Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834 [TBL] [Abstract][Full Text] [Related]
7. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Zhou JM; Xue ZX; Du ZY; Melese T; Boyer PD Biochemistry; 1988 Jul; 27(14):5129-35. PubMed ID: 2901855 [TBL] [Abstract][Full Text] [Related]
8. The characteristics and effect on catalysis of nucleotide binding to noncatalytic sites of chloroplast F1-ATPase. Milgrom YM; Ehler LL; Boyer PD J Biol Chem; 1991 Jun; 266(18):11551-8. PubMed ID: 1828802 [TBL] [Abstract][Full Text] [Related]
9. Significant quantities of endogenous GDP and ADP are present on catalytic sites of the F1-ATPase isolated from M. lysodeikticus in the absence of added nucleotides. Mileykovskaya EI; Kormer SS; Allison WS Biochim Biophys Acta; 1992 Mar; 1099(3):219-25. PubMed ID: 1532327 [TBL] [Abstract][Full Text] [Related]
10. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
11. Two tight binding sites for ADP and their interactions during nucleotide exchange in chloroplast coupling factor 1. Digel JG; McCarty RE Biochemistry; 1995 Nov; 34(44):14482-9. PubMed ID: 7578053 [TBL] [Abstract][Full Text] [Related]
12. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
13. [Functions and localization of nucleotide-binding sites of CF1-ATPase using dialdehyde derivatives of ADP and ATP]. Sytnik SK; Mal'ian AN Biokhimiia; 1983 Jun; 48(6):890-6. PubMed ID: 6224516 [TBL] [Abstract][Full Text] [Related]
14. Differences between two tight ADP binding sites of the chloroplast coupling factor 1 and their effects on ATPase activity. Digel JG; Kishinevsky A; Ong AM; McCarty RE J Biol Chem; 1996 Aug; 271(33):19976-82. PubMed ID: 8702714 [TBL] [Abstract][Full Text] [Related]
15. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]
16. The effects of octylglucoside on the interactions of chloroplast coupling factor 1 (CF1) with adenine nucleotides. Pick U; Bassilian S Eur J Biochem; 1983 Jun; 133(2):289-97. PubMed ID: 6221928 [TBL] [Abstract][Full Text] [Related]
17. [Presteady-state kinetics of ATP hydrolysis by chloroplast CF1-ATPASE]. Mal'ian AN; Vitseva OI Biokhimiia; 1983 May; 48(5):718-24. PubMed ID: 6223667 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site. Murataliev MB; Boyer PD Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675 [TBL] [Abstract][Full Text] [Related]
19. Binding and exchange of nucleotides on the chloroplast coupling factor CF1. The role of magnesium. Girault G; Galmiche JM; Lemaire C; Stulzaft O Eur J Biochem; 1982 Nov; 128(2-3):405-11. PubMed ID: 6217972 [TBL] [Abstract][Full Text] [Related]
20. Chloroplast F1 ATPase has more than three nucleotide binding sites, and 2-azido-ADP or 2-azido-ATP at both catalytic and noncatalytic sites labels the beta subunit. Xue ZX; Zhou JM; Melese T; Cross RL; Boyer PD Biochemistry; 1987 Jun; 26(13):3749-53. PubMed ID: 2888481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]