These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 2865256)
21. Substrate binding-induced alteration of nucleotide binding site properties of chloroplast coupling factor 1. Shapiro AB; McCarty RE J Biol Chem; 1990 Mar; 265(8):4340-7. PubMed ID: 2137822 [TBL] [Abstract][Full Text] [Related]
22. Mitochondrial F1-ATPase will bind and cleave ATP but only slowly release ADP after N,N'-dicyclohexylcarbodiimide or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole derivatization. Kandpal RP; Melese T; Stroop SD; Boyer PD J Biol Chem; 1985 May; 260(9):5542-7. PubMed ID: 2859288 [TBL] [Abstract][Full Text] [Related]
23. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP. Jault JM; Allison WS J Biol Chem; 1994 Jan; 269(1):319-25. PubMed ID: 8276813 [TBL] [Abstract][Full Text] [Related]
24. ATP binding at noncatalytic sites of soluble chloroplast F1-ATPase is required for expression of the enzyme activity. Milgrom YM; Ehler LL; Boyer PD J Biol Chem; 1990 Nov; 265(31):18725-8. PubMed ID: 2146260 [TBL] [Abstract][Full Text] [Related]
25. Modulation of the GTPase activity of the chloroplast F1-ATPase by ATP binding at noncatalytic sites. Xue Z; Boyer PD Eur J Biochem; 1989 Feb; 179(3):677-81. PubMed ID: 2522043 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3. Yoshida M; Allison WS J Biol Chem; 1986 May; 261(13):5714-21. PubMed ID: 2871016 [TBL] [Abstract][Full Text] [Related]
27. The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites. Jault JM; Matsui T; Jault FM; Kaibara C; Muneyuki E; Yoshida M; Kagawa Y; Allison WS Biochemistry; 1995 Dec; 34(50):16412-8. PubMed ID: 8845368 [TBL] [Abstract][Full Text] [Related]
28. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297 [TBL] [Abstract][Full Text] [Related]
29. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jul; 1459(1):202-17. PubMed ID: 10924912 [TBL] [Abstract][Full Text] [Related]
30. Magnesium regulates both the nucleotide binding and the enzyme activity of isolated chloroplast coupling factor 1. Hisabori T; Mochizuki K J Biochem; 1993 Dec; 114(6):808-12. PubMed ID: 8138536 [TBL] [Abstract][Full Text] [Related]
31. Inorganic phosphate-dependent ADP binding on the chloroplast coupling factor and its participation in ATP synthesis. Komatsu-Takaki M J Biochem; 1983 Oct; 94(4):1095-100. PubMed ID: 6228548 [TBL] [Abstract][Full Text] [Related]
32. Reaction mechanism of Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. ATP hydrolysis with CaATP as a substrate and role of divalent cation. Shigekawa M; Wakabayashi S; Nakamura H J Biol Chem; 1983 Jul; 258(14):8698-707. PubMed ID: 6223035 [TBL] [Abstract][Full Text] [Related]
33. Catalytic properties of chloroplast F1-ATPase modified at catalytic or noncatalytic sites by 2-azido adenine nucleotides. Melese T; Xue ZX; Stempel KE; Boyer PD J Biol Chem; 1988 Apr; 263(12):5833-40. PubMed ID: 2895774 [TBL] [Abstract][Full Text] [Related]
34. Function of tightly bound nucleotides on membrane-bound chloroplast coupling factor. Leckband D; Hammes GG Biochemistry; 1988 May; 27(10):3629-33. PubMed ID: 2900652 [TBL] [Abstract][Full Text] [Related]
35. Evidence that energization of the chloroplast ATP synthase favors ATP formation at the tight binding catalytic site and increases the affinity for ADP at another catalytic site. Zhou JM; Boyer PD J Biol Chem; 1993 Jan; 268(3):1531-8. PubMed ID: 8420929 [TBL] [Abstract][Full Text] [Related]
36. Four tight nucleotide binding sites of chloroplast coupling factor 1. Shapiro AB; Huber AH; McCarty RE J Biol Chem; 1991 Mar; 266(7):4194-200. PubMed ID: 1825653 [TBL] [Abstract][Full Text] [Related]
37. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
38. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
39. Vanadate, a transition state inhibitor of chloroplast CF1-ATPase. Hochman Y; Carmeli S; Carmeli C J Biol Chem; 1993 Jun; 268(17):12373-9. PubMed ID: 8509376 [TBL] [Abstract][Full Text] [Related]
40. Tight nucleotide binding sites and ATPase activities of the Rhodospirillum rubrum RrF1-ATPase as compared to spinach chloroplast CF1-ATPase. Weiss S; McCarty RE; Gromet-Elhanan Z J Bioenerg Biomembr; 1994 Oct; 26(5):573-81. PubMed ID: 7896772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]