These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28652604)

  • 1. Universal framework for edge controllability of complex networks.
    Pang SP; Wang WX; Hao F; Lai YC
    Sci Rep; 2017 Jun; 7(1):4224. PubMed ID: 28652604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural controllability of general edge dynamics in complex network.
    Pang S; Zhou Y; Ren X; Xu F
    Sci Rep; 2023 Feb; 13(1):3393. PubMed ID: 36854719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact controllability of complex networks.
    Yuan Z; Zhao C; Di Z; Wang WX; Lai YC
    Nat Commun; 2013; 4():2447. PubMed ID: 24025746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllability limit of edge dynamics in complex networks.
    Pang SP; Wang WX; Hao F
    Phys Rev E; 2019 Aug; 100(2-1):022318. PubMed ID: 31574598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attack Vulnerability of Network Controllability.
    Lu ZM; Li XF
    PLoS One; 2016; 11(9):e0162289. PubMed ID: 27588941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Edge Directions on the Structural Controllability of Complex Networks.
    Xiao Y; Lao S; Hou L; Small M; Bai L
    PLoS One; 2015; 10(8):e0135282. PubMed ID: 26281042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllability of flow-conservation networks.
    Zhao C; Zeng A; Jiang R; Yuan Z; Wang WX
    Phys Rev E; 2017 Jul; 96(1-1):012314. PubMed ID: 29347124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target control based on edge dynamics in complex networks.
    Lu F; Yang K; Qian Y
    Sci Rep; 2020 Jun; 10(1):9991. PubMed ID: 32561879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability of deterministic networks with the identical degree sequence.
    Ma X; Zhao H; Wang B
    PLoS One; 2015; 10(5):e0127545. PubMed ID: 26020920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control efficacy of complex networks.
    Gao XD; Wang WX; Lai YC
    Sci Rep; 2016 Jun; 6():28037. PubMed ID: 27324438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of robustness of interdependent network controllability by redundant design.
    Zhang Z; Yin Y; Zhang X; Liu L
    PLoS One; 2018; 13(2):e0192874. PubMed ID: 29438426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllability of complex networks.
    Liu YY; Slotine JJ; Barabási AL
    Nature; 2011 May; 473(7346):167-73. PubMed ID: 21562557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrelevance of linear controllability to nonlinear dynamical networks.
    Jiang J; Lai YC
    Nat Commun; 2019 Sep; 10(1):3961. PubMed ID: 31481693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State feedback control design for Boolean networks.
    Liu R; Qian C; Liu S; Jin YF
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):70. PubMed ID: 27586140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness of controlling edge dynamics in complex networks against node failure.
    Pang SP; Hao F; Wang WX
    Phys Rev E; 2016 Nov; 94(5-1):052310. PubMed ID: 27967006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of input node placement in the controllability of structural brain networks.
    Alizadeh Darbandi SS; Fornito A; Ghasemi A
    Sci Rep; 2024 Mar; 14(1):6902. PubMed ID: 38519624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target control of complex networks.
    Gao J; Liu YY; D'Souza RM; Barabási AL
    Nat Commun; 2014 Nov; 5():5415. PubMed ID: 25388503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of correlations on controllability transition in network control.
    Nie S; Wang XW; Wang BH; Jiang LL
    Sci Rep; 2016 Apr; 6():23952. PubMed ID: 27063294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A geometrical approach to control and controllability of nonlinear dynamical networks.
    Wang LZ; Su RQ; Huang ZG; Wang X; Wang WX; Grebogi C; Lai YC
    Nat Commun; 2016 Apr; 7():11323. PubMed ID: 27076273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodal dynamics, not degree distributions, determine the structural controllability of complex networks.
    Cowan NJ; Chastain EJ; Vilhena DA; Freudenberg JS; Bergstrom CT
    PLoS One; 2012; 7(6):e38398. PubMed ID: 22761682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.