These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28652626)
1. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach. Havelka D; Deriu MA; Cifra M; Kučera O Sci Rep; 2017 Jun; 7(1):4227. PubMed ID: 28652626 [TBL] [Abstract][Full Text] [Related]
2. Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes. Detrich HW Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):501-13. PubMed ID: 9406432 [TBL] [Abstract][Full Text] [Related]
3. Microtubule instability driven by longitudinal and lateral strain propagation. Igaev M; Grubmüller H PLoS Comput Biol; 2020 Sep; 16(9):e1008132. PubMed ID: 32877399 [TBL] [Abstract][Full Text] [Related]
4. Insights into the flexibility of the T3 loop and GTPase activating protein (GAP) domain of dimeric α and β tubulins from a molecular dynamics perspective. C SK; Gadewal N; Choudhary RK; Dasgupta D Comput Biol Chem; 2019 Oct; 82():37-43. PubMed ID: 31255973 [TBL] [Abstract][Full Text] [Related]
5. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. Detrich HW; Parker SK; Williams RC; Nogales E; Downing KH J Biol Chem; 2000 Nov; 275(47):37038-47. PubMed ID: 10956651 [TBL] [Abstract][Full Text] [Related]
6. Diverse balances of tubulin interactions and shape change drive and interrupt microtubule depolymerization. Bollinger JA; Stevens MJ Soft Matter; 2019 Oct; 15(40):8137-8146. PubMed ID: 31593193 [TBL] [Abstract][Full Text] [Related]
7. Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature. Redeker V; Frankfurter A; Parker SK; Rossier J; Detrich HW Biochemistry; 2004 Sep; 43(38):12265-74. PubMed ID: 15379565 [TBL] [Abstract][Full Text] [Related]
8. An atomistic view of microtubule stabilization by GTP. Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730 [TBL] [Abstract][Full Text] [Related]
9. An abundance of tubulins. Oakley BR Trends Cell Biol; 2000 Dec; 10(12):537-42. PubMed ID: 11121746 [TBL] [Abstract][Full Text] [Related]
10. Mechanical model of the tubulin dimer based on molecular dynamics simulations. Enemark S; Deriu MA; Soncini M; Redaelli A J Biomech Eng; 2008 Aug; 130(4):041008. PubMed ID: 18601450 [TBL] [Abstract][Full Text] [Related]
17. Essential role of tubulin-folding cofactor D in microtubule assembly and its association with microtubules in fission yeast. Hirata D; Masuda H; Eddison M; Toda T EMBO J; 1998 Feb; 17(3):658-66. PubMed ID: 9450991 [TBL] [Abstract][Full Text] [Related]
18. Direct observation of individual tubulin dimers binding to growing microtubules. Mickolajczyk KJ; Geyer EA; Kim T; Rice LM; Hancock WO Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7314-7322. PubMed ID: 30804205 [TBL] [Abstract][Full Text] [Related]
19. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. Ichikawa M; Khalifa AAZ; Kubo S; Dai D; Basu K; Maghrebi MAF; Vargas J; Bui KH Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19930-19938. PubMed ID: 31527277 [TBL] [Abstract][Full Text] [Related]
20. Identification of betaIII- and betaIV-tubulin isotypes in cold-adapted microtubules from Atlantic cod (Gadus morhua): antibody mapping and cDNA sequencing. Modig C; Olsson PE; Barasoain I; de Ines C; Andreu JM; Roach MC; Ludueña RF; Wallin M Cell Motil Cytoskeleton; 1999; 42(4):315-30. PubMed ID: 10223637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]