These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28652684)

  • 1. Laser-plasmas in the relativistic-transparency regime: Science and applications.
    Fernández JC; Cort Gautier D; Huang C; Palaniyappan S; Albright BJ; Bang W; Dyer G; Favalli A; Hunter JF; Mendez J; Roth M; Swinhoe M; Bradley PA; Deppert O; Espy M; Falk K; Guler N; Hamilton C; Hegelich BM; Henzlova D; Ianakiev KD; Iliev M; Johnson RP; Kleinschmidt A; Losko AS; McCary E; Mocko M; Nelson RO; Roycroft R; Santiago Cordoba MA; Schanz VA; Schaumann G; Schmidt DW; Sefkow A; Shimada T; Taddeucci TN; Tebartz A; Vogel SC; Vold E; Wurden GA; Yin L
    Phys Plasmas; 2017 May; 24(5):056702. PubMed ID: 28652684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas.
    Palaniyappan S; Huang C; Gautier DC; Hamilton CE; Santiago MA; Kreuzer C; Sefkow AB; Shah RC; Fernández JC
    Nat Commun; 2015 Dec; 6():10170. PubMed ID: 26657147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams.
    Bang W; Albright BJ; Bradley PA; Vold EL; Boettger JC; Fernández JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063101. PubMed ID: 26764832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science.
    Günther MM; Rosmej ON; Tavana P; Gyrdymov M; Skobliakov A; Kantsyrev A; Zähter S; Borisenko NG; Pukhov A; Andreev NE
    Nat Commun; 2022 Jan; 13(1):170. PubMed ID: 35013380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser acceleration of quasi-monoenergetic MeV ion beams.
    Hegelich BM; Albright BJ; Cobble J; Flippo K; Letzring S; Paffett M; Ruhl H; Schreiber J; Schulze RK; Fernández JC
    Nature; 2006 Jan; 439(7075):441-4. PubMed ID: 16437109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.
    Nakatsutsumi M; Sentoku Y; Korzhimanov A; Chen SN; Buffechoux S; Kon A; Atherton B; Audebert P; Geissel M; Hurd L; Kimmel M; Rambo P; Schollmeier M; Schwarz J; Starodubtsev M; Gremillet L; Kodama R; Fuchs J
    Nat Commun; 2018 Jan; 9(1):280. PubMed ID: 29348402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced laser-driven ion acceleration in the relativistic transparency regime.
    Henig A; Kiefer D; Markey K; Gautier DC; Flippo KA; Letzring S; Johnson RP; Shimada T; Yin L; Albright BJ; Bowers KJ; Fernández JC; Rykovanov SG; Wu HC; Zepf M; Jung D; Liechtenstein VKh; Schreiber J; Habs D; Hegelich BM
    Phys Rev Lett; 2009 Jul; 103(4):045002. PubMed ID: 19659362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz.
    Mordovanakis AG; Easter J; Naumova N; Popov K; Masson-Laborde PE; Hou B; Sokolov I; Mourou G; Glazyrin IV; Rozmus W; Bychenkov V; Nees J; Krushelnick K
    Phys Rev Lett; 2009 Dec; 103(23):235001. PubMed ID: 20366152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing laser-plasma ion accelerators driving an intense neutron beam via nuclear signatures.
    Favalli A; Guler N; Henzlova D; Croft S; Falk K; Gautier DC; Ianakiev KD; Iliev M; Palaniyappan S; Roth M; Fernandez JC; Swinhoe MT
    Sci Rep; 2019 Feb; 9(1):2004. PubMed ID: 30765811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH_{2} Targets.
    Wagner F; Deppert O; Brabetz C; Fiala P; Kleinschmidt A; Poth P; Schanz VA; Tebartz A; Zielbauer B; Roth M; Stöhlker T; Bagnoud V
    Phys Rev Lett; 2016 May; 116(20):205002. PubMed ID: 27258872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.
    Bailly-Grandvaux M; Santos JJ; Bellei C; Forestier-Colleoni P; Fujioka S; Giuffrida L; Honrubia JJ; Batani D; Bouillaud R; Chevrot M; Cross JE; Crowston R; Dorard S; Dubois JL; Ehret M; Gregori G; Hulin S; Kojima S; Loyez E; Marquès JR; Morace A; Nicolaï P; Roth M; Sakata S; Schaumann G; Serres F; Servel J; Tikhonchuk VT; Woolsey N; Zhang Z
    Nat Commun; 2018 Jan; 9(1):102. PubMed ID: 29317653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities.
    Dover NP; Ziegler T; Assenbaum S; Bernert C; Bock S; Brack FE; Cowan TE; Ditter EJ; Garten M; Gaus L; Goethel I; Hicks GS; Kiriyama H; Kluge T; Koga JK; Kon A; Kondo K; Kraft S; Kroll F; Lowe HF; Metzkes-Ng J; Miyatake T; Najmudin Z; Püschel T; Rehwald M; Reimold M; Sakaki H; Schlenvoigt HP; Shiokawa K; Umlandt MEP; Schramm U; Zeil K; Nishiuchi M
    Light Sci Appl; 2023 Mar; 12(1):71. PubMed ID: 36914618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright laser-driven neutron source based on the relativistic transparency of solids.
    Roth M; Jung D; Falk K; Guler N; Deppert O; Devlin M; Favalli A; Fernandez J; Gautier D; Geissel M; Haight R; Hamilton CE; Hegelich BM; Johnson RP; Merrill F; Schaumann G; Schoenberg K; Schollmeier M; Shimada T; Taddeucci T; Tybo JL; Wagner F; Wender SA; Wilde CH; Wurden GA
    Phys Rev Lett; 2013 Jan; 110(4):044802. PubMed ID: 25166169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Multi-MeV Photon Emission by a Laser-Driven Electron Beam in a Self-Generated Magnetic Field.
    Stark DJ; Toncian T; Arefiev AV
    Phys Rev Lett; 2016 May; 116(18):185003. PubMed ID: 27203330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisional heating and adiabatic expansion of warm dense matter with intense relativistic electrons.
    Coleman JE; Colgan J
    Phys Rev E; 2017 Jul; 96(1-1):013208. PubMed ID: 29347078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme.
    Higginson A; Gray RJ; King M; Dance RJ; Williamson SDR; Butler NMH; Wilson R; Capdessus R; Armstrong C; Green JS; Hawkes SJ; Martin P; Wei WQ; Mirfayzi SR; Yuan XH; Kar S; Borghesi M; Clarke RJ; Neely D; McKenna P
    Nat Commun; 2018 Feb; 9(1):724. PubMed ID: 29463872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.
    Mangles SP; Murphy CD; Najmudin Z; Thomas AG; Collier JL; Dangor AE; Divall EJ; Foster PS; Gallacher JG; Hooker CJ; Jaroszynski DA; Langley AJ; Mori WB; Norreys PA; Tsung FS; Viskup R; Walton BR; Krushelnick K
    Nature; 2004 Sep; 431(7008):535-8. PubMed ID: 15457251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collisionless Shock Acceleration of High-Flux Quasimonoenergetic Proton Beams Driven by Circularly Polarized Laser Pulses.
    Zhang H; Shen BF; Wang WP; Zhai SH; Li SS; Lu XM; Li JF; Xu RJ; Wang XL; Liang XY; Leng YX; Li RX; Xu ZZ
    Phys Rev Lett; 2017 Oct; 119(16):164801. PubMed ID: 29099228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.