These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28652856)

  • 1. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs).
    Murale DP; Hong SC; Haque MM; Lee JS
    Proteome Sci; 2016; 15():14. PubMed ID: 28652856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Binding Site Hotspot Map of the FKBP12-Rapamycin-FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics.
    Flaxman HA; Chang CF; Wu HY; Nakamoto CH; Woo CM
    J Am Chem Soc; 2019 Jul; 141(30):11759-11764. PubMed ID: 31309829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Photo-Cross-Linking Probes: From Target Protein Searching to Imaging Applications.
    Kozoriz K; Shkel O; Hong KT; Kim DH; Kim YK; Lee JS
    Acc Chem Res; 2023 Jan; 56(1):25-36. PubMed ID: 36534922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target Identification by Diazirine Photo-Cross-linking and Click Chemistry.
    Mackinnon AL; Taunton J
    Curr Protoc Chem Biol; 2009 Dec; 1():55-73. PubMed ID: 23667793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactivatable oligonucleotide probes to trap single-stranded DNA binding proteins: Updating the potential of 4-thiothymidine from a comparative study.
    Gérard-Hirne T; Thiebaut F; Sachon E; Désert A; Drujon T; Guérineau V; Michel BY; Benhida R; Coulon S; Saintomé C; Guianvarc'h D
    Biochimie; 2018 Nov; 154():164-175. PubMed ID: 30171884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design.
    Page ACS; Scholz SO; Keenan KN; Spradlin JN; Belcher BP; Brittain SM; Tallarico JA; McKenna JM; Schirle M; Nomura DK; Toste FD
    Chem Sci; 2022 Mar; 13(13):3851-3856. PubMed ID: 35432890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-affinity pulling down of low-affinity binding proteins mediated by post-translational modifications.
    Yang Y; He M; Wei T; Sun J; Wu S; Gao T; Guo Z
    Anal Chim Acta; 2020 Apr; 1107():164-171. PubMed ID: 32200891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New AdoMet Analogues as Tools for Enzymatic Transfer of Photo-Cross-Linkers and Capturing RNA-Protein Interactions.
    Muttach F; Mäsing F; Studer A; Rentmeister A
    Chemistry; 2017 May; 23(25):5988-5993. PubMed ID: 28042932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Applications of Diazirines in Chemical Proteomics.
    Halloran MW; Lumb JP
    Chemistry; 2019 Apr; 25(19):4885-4898. PubMed ID: 30444029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.
    Chang TC; Adak AK; Lin TW; Li PJ; Chen YJ; Lai CH; Liang CF; Chen YJ; Lin CC
    Bioorg Med Chem; 2016 Mar; 24(6):1216-24. PubMed ID: 26857483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Alkynyl Group on Reactivity in Photoaffinity Labeling with 2-Thienyl-Substituted α-Ketoamide.
    Moriyama T; Mizukami D; Yoritate M; Usui K; Takahashi D; Ota E; Sodeoka M; Ueda T; Karasawa S; Hirai G
    Chemistry; 2022 Feb; 28(11):e202103925. PubMed ID: 35023607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous quantification of Cyt c interactions with HSP27 and Bcl-xL using molecularly imprinted polymers (MIPs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics.
    Zhang W; Zhang T; Chen Y
    J Proteomics; 2019 Feb; 192():188-195. PubMed ID: 30237093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Suite of "Minimalist" Photo-Crosslinkers for Live-Cell Imaging and Chemical Proteomics: Case Study with BRD4 Inhibitors.
    Pan S; Jang SY; Wang D; Liew SS; Li Z; Lee JS; Yao SQ
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11816-11821. PubMed ID: 28783236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Whole Proteome Inventory of Background Photocrosslinker Binding.
    Kleiner P; Heydenreuter W; Stahl M; Korotkov VS; Sieber SA
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1396-1401. PubMed ID: 27981680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bifunctional amino acid to study protein-protein interactions.
    Yang T; Li X; Li XD
    RSC Adv; 2020 Nov; 10(69):42076-42083. PubMed ID: 35516754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolytic Labeling and Its Applications in Protein Drug Discovery and Development.
    Chen Y; Topp EM
    J Pharm Sci; 2019 Feb; 108(2):791-797. PubMed ID: 30339867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.
    Joiner CM; Breen ME; Clayton J; Mapp AK
    Chembiochem; 2017 Jan; 18(2):181-184. PubMed ID: 27966261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches.
    Kubota K; Funabashi M; Ogura Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):22-27. PubMed ID: 30392561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical proteomics approaches for identifying the cellular targets of natural products.
    Wright MH; Sieber SA
    Nat Prod Rep; 2016 May; 33(5):681-708. PubMed ID: 27098809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.