These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28652856)

  • 21. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification.
    Herner A; Marjanovic J; Lewandowski TM; Marin V; Patterson M; Miesbauer L; Ready D; Williams J; Vasudevan A; Lin Q
    J Am Chem Soc; 2016 Nov; 138(44):14609-14615. PubMed ID: 27740749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.
    Wang J; Gao L; Lee YM; Kalesh KA; Ong YS; Lim J; Jee JE; Sun H; Lee SS; Hua ZC; Lin Q
    Pharmacol Ther; 2016 Jun; 162():10-22. PubMed ID: 26808165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-affinity labeling strategies in identifying the protein ligands of bioactive small molecules: examples of targeted synthesis of drug analog photoprobes.
    Colca JR; Harrigan GG
    Comb Chem High Throughput Screen; 2004 Nov; 7(7):699-704. PubMed ID: 15578932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient and selective photoaffinity labeling of the estrogen receptor using two nonsteroidal ligands that embody aryl azide or tetrafluoroaryl azide photoreactive functions.
    Pinney KG; Carlson KE; Katzenellenbogen BS; Katzenellenbogen JA
    Biochemistry; 1991 Mar; 30(9):2421-31. PubMed ID: 2001370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diazirine-containing tag-free RNA probes for efficient RISC-loading and photoaffinity labeling of microRNA targets.
    Nakamoto K; Akao Y; Ueno Y
    Bioorg Med Chem Lett; 2018 Sep; 28(17):2906-2909. PubMed ID: 30021704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications.
    Conway LP; Jadhav AM; Homan RA; Li W; Rubiano JS; Hawkins R; Lawrence RM; Parker CG
    Chem Sci; 2021 May; 12(22):7839-7847. PubMed ID: 34168837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network.
    Chen TC; Lin KT; Chen CH; Lee SA; Lee PY; Liu YW; Kuo YL; Wang FS; Lai JM; Huang CY
    J Proteome Res; 2014 Dec; 13(12):5339-46. PubMed ID: 25241761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "Minimalist" cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling.
    Li Z; Wang D; Li L; Pan S; Na Z; Tan CY; Yao SQ
    J Am Chem Soc; 2014 Jul; 136(28):9990-8. PubMed ID: 24972113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells.
    Yang Y; Song H; Chen PR
    IUBMB Life; 2016 Nov; 68(11):879-886. PubMed ID: 27670842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical proteomics from a nuclear magnetic resonance spectroscopy perspective.
    Sem DS
    Expert Rev Proteomics; 2004 Aug; 1(2):165-78. PubMed ID: 15966811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developments of bioorthogonal handle-containing photo-crosslinkers for photoaffinity labeling.
    Guo H; Li Z
    Medchemcomm; 2017 Aug; 8(8):1585-1591. PubMed ID: 30108869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the targets of biologically active small molecules using quantitative proteomics.
    Vendrell-Navarro G; Brockmeyer A; Waldmann H; Janning P; Ziegler S
    Methods Mol Biol; 2015; 1263():263-86. PubMed ID: 25618352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of affinity chromatography in proteomics.
    Lee WC; Lee KH
    Anal Biochem; 2004 Jan; 324(1):1-10. PubMed ID: 14654038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping Protein-Protein Interactions Using Affinity Purification and Mass Spectrometry.
    Lee CM; Adamchek C; Feke A; Nusinow DA; Gendron JM
    Methods Mol Biol; 2017; 1610():231-249. PubMed ID: 28439867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thienyl-Substituted α-Ketoamide: A Less Hydrophobic Reactive Group for Photo-Affinity Labeling.
    Ota E; Usui K; Oonuma K; Koshino H; Nishiyama S; Hirai G; Sodeoka M
    ACS Chem Biol; 2018 Apr; 13(4):876-880. PubMed ID: 29457885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-crosslinking of clinically relevant kinases using H89-derived photo-affinity probes.
    Stolze SC; Liu N; Wijdeven RH; Tuin AW; van den Nieuwendijk AM; Florea BI; van der Stelt M; van der Marel GA; Neefjes JJ; Overkleeft HS
    Mol Biosyst; 2016 May; 12(6):1809-17. PubMed ID: 27138522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Target identification with quantitative activity based protein profiling (ABPP).
    Chen X; Wong YK; Wang J; Zhang J; Lee YM; Shen HM; Lin Q; Hua ZC
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 27723264
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.