BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28652916)

  • 1. Tunable delayed controlled release profile from layered polymeric microparticles.
    Dutta D; Fauer C; Hickey K; Salifu M; Stabenfeldt SE
    J Mater Chem B; 2017 Jun; 5(23):4487-4498. PubMed ID: 28652916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonging food shelf-life by dual actives release from multi-layered polymer particles.
    Biswal AK; Saha S
    Colloids Surf B Biointerfaces; 2019 Mar; 175():281-290. PubMed ID: 30551015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing multilayered particulate systems for tunable drug release profiles.
    Lee WL; Yu PO; Hong M; Widjaja E; Loo SC
    Acta Biomater; 2012 Jul; 8(6):2271-8. PubMed ID: 22342827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of Nicardipine Hydrochloride and Release from Biodegradable Poly(D,L-lactic-co-glycolic acid) Microparticles by Double Emulsion Process: Effect of Emulsion Stability and Different Parameters on Drug Entrapment.
    Soomherun N; Kreua-Ongarjnukool N; Chumnanvej S; Thumsing S
    Int J Biomater; 2017; 2017():1743765. PubMed ID: 29250113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and drug release study of double-layered microparticles of various sizes.
    Lee WL; Seh YC; Widjaja E; Chong HC; Tan NS; Loo SC
    J Pharm Sci; 2012 Aug; 101(8):2787-97. PubMed ID: 22573569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified emulsion solvent evaporation method for fabricating core-shell microspheres.
    Xiao CD; Shen XC; Tao L
    Int J Pharm; 2013 Aug; 452(1-2):227-32. PubMed ID: 23694803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction in burst release after coating poly(D,L-lactide-co-glycolide) (PLGA) microparticles with a drug-free PLGA layer.
    Ahmed AR; Elkharraz K; Irfan M; Bodmeier R
    Pharm Dev Technol; 2012; 17(1):66-72. PubMed ID: 20854130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(2-propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles as a targeted antigen delivery system to direct either CD4
    Yang L; Bracho-Sanchez E; Fernando LP; Lewis JS; Carstens MR; Duvall CL; Keselowsky BG
    Bioeng Transl Med; 2017 Jun; 2(2):202-211. PubMed ID: 29313030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification.
    Gasparini G; Kosvintsev SR; Stillwell MT; Holdich RG
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):199-207. PubMed ID: 17919891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable fabrication of biodegradable Janus and multi-layered particles with hierarchically porous structure.
    Biswal AK; Saha S
    J Colloid Interface Sci; 2020 Apr; 566():120-134. PubMed ID: 32000089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elaboration of Charged Poly(Lactic-co-Glycolic Acid) Microparticles for Effective Release of Tranexamic Acid.
    Huang MH; Huang SY; Chen YX; Chen CY; Lin YS
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.
    Choi SH; Park TG
    Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel bioresorbabale composite fiber structures loaded with proteins for tissue regeneration applications: microstructure and protein release.
    Levy Y; Zilberman M
    J Biomed Mater Res A; 2006 Dec; 79(4):779-87. PubMed ID: 16883584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method.
    Mao S; Shi Y; Li L; Xu J; Schaper A; Kissel T
    Eur J Pharm Biopharm; 2008 Feb; 68(2):214-23. PubMed ID: 17651954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation.
    Kempen DH; Lu L; Zhu X; Kim C; Jabbari E; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2004 Aug; 70(2):293-302. PubMed ID: 15227674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.