These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 28653015)
1. Classification of breast masses in ultrasound images using self-adaptive differential evolution extreme learning machine and rough set feature selection. Prabusankarlal KM; Thirumoorthy P; Manavalan R J Med Imaging (Bellingham); 2017 Apr; 4(2):024507. PubMed ID: 28653015 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
3. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines. Zhang MH; Ma JS; Shen Y; Chen Y Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1755-63. PubMed ID: 26476638 [TBL] [Abstract][Full Text] [Related]
4. Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques. Amin HU; Ullah R; Reza MF; Malik AS J Neuroeng Rehabil; 2023 Jun; 20(1):70. PubMed ID: 37269019 [TBL] [Abstract][Full Text] [Related]
5. Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Kigo SN; Omondi EO; Omolo BO Sci Rep; 2023 Oct; 13(1):17315. PubMed ID: 37828360 [TBL] [Abstract][Full Text] [Related]
6. Transfer learning for automatic joint segmentation of thyroid and breast lesions from ultrasound images. Ma J; Bao L; Lou Q; Kong D Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):363-372. PubMed ID: 34881409 [TBL] [Abstract][Full Text] [Related]
7. A filter approach for feature selection in classification: application to automatic atrial fibrillation detection in electrocardiogram recordings. Michel P; Ngo N; Pons JF; Delliaux S; Giorgi R BMC Med Inform Decis Mak; 2021 May; 21(Suppl 4):130. PubMed ID: 33947379 [TBL] [Abstract][Full Text] [Related]
8. Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach. Xia J; Chen H; Li Q; Zhou M; Chen L; Cai Z; Fang Y; Zhou H Comput Methods Programs Biomed; 2017 Aug; 147():37-49. PubMed ID: 28734529 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach. Liu T; Ge X; Yu J; Guo Y; Wang Y; Wang W; Cui L Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1617-1627. PubMed ID: 29931410 [TBL] [Abstract][Full Text] [Related]
10. Incorporating texture features in a computer-aided breast lesion diagnosis system for automated three-dimensional breast ultrasound. Liu H; Tan T; van Zelst J; Mann R; Karssemeijer N; Platel B J Med Imaging (Bellingham); 2014 Jul; 1(2):024501. PubMed ID: 26158036 [TBL] [Abstract][Full Text] [Related]
11. Automated segmentation of geographic atrophy in fundus autofluorescence images using supervised pixel classification. Hu Z; Medioni GG; Hernandez M; Sadda SR J Med Imaging (Bellingham); 2015 Jan; 2(1):014501. PubMed ID: 26158084 [TBL] [Abstract][Full Text] [Related]
12. MRI radiomics analysis of molecular alterations in low-grade gliomas. Shofty B; Artzi M; Ben Bashat D; Liberman G; Haim O; Kashanian A; Bokstein F; Blumenthal DT; Ram Z; Shahar T Int J Comput Assist Radiol Surg; 2018 Apr; 13(4):563-571. PubMed ID: 29270916 [TBL] [Abstract][Full Text] [Related]
13. A Hybridized ELM for Automatic Micro Calcification Detection in Mammogram Images Based on Multi-Scale Features. Melekoodappattu JG; Subbian PS J Med Syst; 2019 May; 43(7):183. PubMed ID: 31093789 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. Sorace AG; Partridge SC; Li X; Virostko J; Barnes SL; Hippe DS; Huang W; Yankeelov TE J Med Imaging (Bellingham); 2018 Jan; 5(1):011019. PubMed ID: 29392160 [TBL] [Abstract][Full Text] [Related]
15. Principal component analysis-based features generation combined with ellipse models-based classification criterion for a ventricular septal defect diagnosis system. Sun S; Wang H Australas Phys Eng Sci Med; 2018 Dec; 41(4):821-836. PubMed ID: 30238221 [TBL] [Abstract][Full Text] [Related]
16. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Huynh BQ; Li H; Giger ML J Med Imaging (Bellingham); 2016 Jul; 3(3):034501. PubMed ID: 27610399 [TBL] [Abstract][Full Text] [Related]
17. Prediction of cancer using customised fuzzy rough machine learning approaches. Arunkumar C; Ramakrishnan S Healthc Technol Lett; 2019 Feb; 6(1):13-18. PubMed ID: 30881694 [TBL] [Abstract][Full Text] [Related]
18. Segmentation of Breast Lesions in Ultrasound Images through Multiresolution Analysis Using Undecimated Discrete Wavelet Transform. Prabusankarlal KM; Thirumoorthy P; Manavalan R Ultrason Imaging; 2016 Nov; 38(6):384-402. PubMed ID: 26586725 [TBL] [Abstract][Full Text] [Related]
19. Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis. Agarwal R; Diaz O; Lladó X; Gubern-Mérida A; Vilanova JC; Martí R Ultrason Imaging; 2018 Mar; 40(2):97-112. PubMed ID: 29182056 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of ultrasound images for computer-aided diagnosis. Wu JY; Tuomi A; Beland MD; Konrad J; Glidden D; Grand D; Merck D J Med Imaging (Bellingham); 2016 Jan; 3(1):014501. PubMed ID: 26835502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]