BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28653063)

  • 1. Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode.
    Huang J; Yang K; Zhang Z; Yang L; Hirano SI
    Chem Commun (Camb); 2017 Jul; 53(55):7800-7803. PubMed ID: 28653063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode.
    Clark SJ; Wang D; Armstrong AR; Bruce PG
    Nat Commun; 2016 Mar; 7():10898. PubMed ID: 26996753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li Storage of Calcium Niobates for Lithium Ion Batteries.
    Yim H; Yu SH; Yoo SY; Sung YE; Choi JW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8103-7. PubMed ID: 26726470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-density sodium and lithium ion battery anodes from banana peels.
    Lotfabad EM; Ding J; Cui K; Kohandehghan A; Kalisvaart WP; Hazelton M; Mitlin D
    ACS Nano; 2014 Jul; 8(7):7115-29. PubMed ID: 24897543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation.
    Ramirez D; Suto Y; Rosero-Navarro NC; Miura A; Tadanaga K; Jaramillo F
    Inorg Chem; 2018 Apr; 57(7):4181-4188. PubMed ID: 29561606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes coupled with layered graphite to support SnTe nanodots as high-rate and ultra-stable lithium-ion battery anodes.
    Chen H; Ke G; Wu X; Li W; Mi H; Li Y; Sun L; Zhang Q; He C; Ren X
    Nanoscale; 2021 Feb; 13(6):3782-3789. PubMed ID: 33564809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.
    Das S; Swain D; Araujo RB; Shi S; Ahuja R; Row TNG; Bhattacharyya AJ
    Chem Asian J; 2018 Feb; 13(3):299-310. PubMed ID: 29280560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries.
    Cai W; Yan C; Yao YX; Xu L; Chen XR; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):13007-13012. PubMed ID: 33793052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.
    Ivanova S; Zhecheva E; Kukeva R; Nihtianova D; Mihaylov L; Atanasova G; Stoyanova R
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17321-33. PubMed ID: 27315402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-inorganic lead halide perovskite nanohexagons for high performance air-stable lithium batteries.
    Kostopoulou A; Vernardou D; Savva K; Stratakis E
    Nanoscale; 2019 Jan; 11(3):882-889. PubMed ID: 30608506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced high rate capability of Li intercalation in planar and edge defect-rich MoS
    Budumuru AK; Rakesh B; Sudakar C
    Nanoscale; 2019 May; 11(18):8882-8897. PubMed ID: 31016303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Layered Perovskite Oxyfluoride Cathodes with High Capacity Involving O-O Bond Formation for Fluoride-Ion Batteries.
    Miki H; Yamamoto K; Nakaki H; Yoshinari T; Nakanishi K; Nakanishi S; Iba H; Miyawaki J; Harada Y; Kuwabara A; Wang Y; Watanabe T; Matsunaga T; Maeda K; Kageyama H; Uchimoto Y
    J Am Chem Soc; 2024 Feb; 146(6):3844-3853. PubMed ID: 38193701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li
    Sun Y; Cong H; Zan L; Zhang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38545-38555. PubMed ID: 29035035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disordered rock salt anode for fast-charging lithium-ion batteries.
    Liu H; Zhu Z; Yan Q; Yu S; He X; Chen Y; Zhang R; Ma L; Liu T; Li M; Lin R; Chen Y; Li Y; Xing X; Choi Y; Gao L; Cho HS; An K; Feng J; Kostecki R; Amine K; Wu T; Lu J; Xin HL; Ong SP; Liu P
    Nature; 2020 Sep; 585(7823):63-67. PubMed ID: 32879503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.