These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28653141)

  • 1. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor.
    Santulli G; Lewis DR; Marks AR
    J Muscle Res Cell Motil; 2017 Feb; 38(1):37-45. PubMed ID: 28653141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.
    Lainé J; Skoglund G; Fournier E; Tabti N
    Skelet Muscle; 2018 Jan; 8(1):1. PubMed ID: 29304851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging impairs regulation of ryanodine receptors from extensor digitorum longus but not soleus muscles.
    Gaboardi AJ; Kressler J; Snow TK; Balog EM
    Muscle Nerve; 2018 Jun; 57(6):1022-1025. PubMed ID: 29315676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RyR1 deficiency in congenital myopathies disrupts excitation-contraction coupling.
    Zhou H; Rokach O; Feng L; Munteanu I; Mamchaoui K; Wilmshurst JM; Sewry C; Manzur AY; Pillay K; Mouly V; Duchen M; Jungbluth H; Treves S; Muntoni F
    Hum Mutat; 2013 Jul; 34(7):986-96. PubMed ID: 23553787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From excitation to intracellular Ca
    Allard B
    Neuromuscul Disord; 2018 May; 28(5):394-401. PubMed ID: 29627324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor.
    Eltit JM; Bannister RA; Moua O; Altamirano F; Hopkins PM; Pessah IN; Molinski TF; López JR; Beam KG; Allen PD
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7923-8. PubMed ID: 22547813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1.
    García-Castañeda M; Vega AV; Rodríguez R; Montiel-Jaen MG; Cisneros B; Zarain-Herzberg A; Avila G
    J Physiol; 2017 Jul; 595(13):4167-4187. PubMed ID: 28303574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function.
    Flucher BE; Campiglio M
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1101-1110. PubMed ID: 30543836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle.
    Prosser BL; Hernández-Ochoa EO; Schneider MF
    Cell Calcium; 2011 Oct; 50(4):323-31. PubMed ID: 21784520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine receptor Ca
    Denniss A; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2018 Aug; 101():49-53. PubMed ID: 29775742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.
    Bannister RA
    J Exp Biol; 2016 Jan; 219(Pt 2):175-82. PubMed ID: 26792328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca
    Campiglio M; Dyrda A; Tuinte WE; Török E
    Handb Exp Pharmacol; 2023; 279():3-39. PubMed ID: 36592225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory mechanisms of ryanodine receptor/Ca
    Ogawa H; Kurebayashi N; Yamazawa T; Murayama T
    J Muscle Res Cell Motil; 2021 Jun; 42(2):291-304. PubMed ID: 32040690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1.
    Vega AV; Ramos-Mondragón R; Calderón-Rivera A; Zarain-Herzberg A; Avila G
    J Physiol; 2011 Oct; 589(Pt 19):4649-69. PubMed ID: 21825032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.