These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28653341)

  • 1. OpenSimRoot: widening the scope and application of root architectural models.
    Postma JA; Kuppe C; Owen MR; Mellor N; Griffiths M; Bennett MJ; Lynch JP; Watt M
    New Phytol; 2017 Aug; 215(3):1274-1286. PubMed ID: 28653341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Crop Root Systems Using OpenSimRoot.
    Schäfer ED; Owen MR; Postma JA; Kuppe C; Black CK; Lynch JP
    Methods Mol Biol; 2022; 2395():293-323. PubMed ID: 34822160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRootBox: a structural-functional modelling framework for root systems.
    Schnepf A; Leitner D; Landl M; Lobet G; Mai TH; Morandage S; Sheng C; Zörner M; Vanderborght J; Vereecken H
    Ann Bot; 2018 Apr; 121(5):1033-1053. PubMed ID: 29432520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean.
    Rangarajan H; Postma JA; Lynch JP
    Ann Bot; 2018 Aug; 122(3):485-499. PubMed ID: 29982363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures.
    Postma JA; Lynch JP
    Ann Bot; 2012 Jul; 110(2):521-34. PubMed ID: 22523423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography.
    Keyes SD; Zygalakis KC; Roose T
    Bull Math Biol; 2017 Dec; 79(12):2785-2813. PubMed ID: 29030805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model.
    Ge Z; Rubio G; Lynch JP
    Plant Soil; 2000; 218(1-2):159-71. PubMed ID: 11543364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RootSlice-A novel functional-structural model for root anatomical phenotypes.
    Sidhu JS; Ajmera I; Arya S; Lynch JP
    Plant Cell Environ; 2023 May; 46(5):1671-1690. PubMed ID: 36708192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization modeling of plant root architecture for water and phosphorus acquisition.
    Ho MD; McCannon BC; Lynch JP
    J Theor Biol; 2004 Feb; 226(3):331-40. PubMed ID: 14643647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DigR: a generic model and its open source simulation software to mimic three-dimensional root-system architecture diversity.
    Barczi JF; Rey H; Griffon S; Jourdan C
    Ann Bot; 2018 Apr; 121(5):1089-1104. PubMed ID: 29506106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.
    Larson JE; Funk JL
    New Phytol; 2016 May; 210(3):827-38. PubMed ID: 26765506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotyping Crop Root Crowns: General Guidance and Specific Protocols for Maize, Wheat, and Soybean.
    York LM
    Methods Mol Biol; 2018; 1761():23-32. PubMed ID: 29525946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley.
    Oyiga BC; Palczak J; Wojciechowski T; Lynch JP; Naz AA; Léon J; Ballvora A
    Plant Cell Environ; 2020 Mar; 43(3):692-711. PubMed ID: 31734943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture.
    Strock CF; Rangarajan H; Black CK; Schäfer ED; Lynch JP
    Ann Bot; 2022 Feb; 129(3):315-330. PubMed ID: 34850823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shaping an Optimal Soil by Root-Soil Interaction.
    Jin K; White PJ; Whalley WR; Shen J; Shi L
    Trends Plant Sci; 2017 Oct; 22(10):823-829. PubMed ID: 28803694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Plant Root Traits Under Controlled and Field Conditions: Step-by-Step Procedures.
    Delory BM; Weidlich EWA; van Duijnen R; Pagès L; Temperton VM
    Methods Mol Biol; 2018; 1761():3-22. PubMed ID: 29525945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability.
    Postma JA; Lynch JP
    Ann Bot; 2011 Apr; 107(5):829-41. PubMed ID: 20971728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits.
    Meunier F; Couvreur V; Draye X; Vanderborght J; Javaux M
    J Math Biol; 2017 Nov; 75(5):1133-1170. PubMed ID: 28255663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions.
    Sandhu N; Raman KA; Torres RO; Audebert A; Dardou A; Kumar A; Henry A
    Plant Physiol; 2016 Aug; 171(4):2562-76. PubMed ID: 27342311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.