These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 28653391)
21. Meta-analysis of set-based multiple phenotype association test based on GWAS summary statistics from different cohorts. Zhu L; Zhang S; Sha Q Front Genet; 2024; 15():1359591. PubMed ID: 39301532 [TBL] [Abstract][Full Text] [Related]
22. Genomic Prediction Using Individual-Level Data and Summary Statistics from Multiple Populations. Vandenplas J; Calus MPL; Gorjanc G Genetics; 2018 Sep; 210(1):53-69. PubMed ID: 30021793 [TBL] [Abstract][Full Text] [Related]
23. Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics. Zhang Y; Cheng Y; Jiang W; Ye Y; Lu Q; Zhao H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33497438 [TBL] [Abstract][Full Text] [Related]
24. Bayesian meta-analysis across genome-wide association studies of diverse phenotypes. Trochet H; Pirinen M; Band G; Jostins L; McVean G; Spencer CCA Genet Epidemiol; 2019 Jul; 43(5):532-547. PubMed ID: 30920090 [TBL] [Abstract][Full Text] [Related]
25. Genome-wide association analysis for multiple continuous secondary phenotypes. Schifano ED; Li L; Christiani DC; Lin X Am J Hum Genet; 2013 May; 92(5):744-59. PubMed ID: 23643383 [TBL] [Abstract][Full Text] [Related]
26. Controlling the joint local false discovery rate is more powerful than meta-analysis methods in joint analysis of summary statistics from multiple genome-wide association studies. Jiang W; Yu W Bioinformatics; 2017 Feb; 33(4):500-507. PubMed ID: 28011772 [TBL] [Abstract][Full Text] [Related]
27. Rare variant association test with multiple phenotypes. Lee S; Won S; Kim YJ; Kim Y; ; Kim BJ; Park T Genet Epidemiol; 2017 Apr; 41(3):198-209. PubMed ID: 28039885 [TBL] [Abstract][Full Text] [Related]
28. PSEA: Phenotype Set Enrichment Analysis--a new method for analysis of multiple phenotypes. Ried JS; Döring A; Oexle K; Meisinger C; Winkelmann J; Klopp N; Meitinger T; Peters A; Suhre K; Wichmann HE; Gieger C Genet Epidemiol; 2012 Apr; 36(3):244-52. PubMed ID: 22714936 [TBL] [Abstract][Full Text] [Related]
29. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes. Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070 [TBL] [Abstract][Full Text] [Related]
30. Multi-trait analysis of rare-variant association summary statistics using MTAR. Luo L; Shen J; Zhang H; Chhibber A; Mehrotra DV; Tang ZZ Nat Commun; 2020 Jun; 11(1):2850. PubMed ID: 32503972 [TBL] [Abstract][Full Text] [Related]
31. Comparison of adaptive multiple phenotype association tests using summary statistics in genome-wide association studies. Sitlani CM; Baldassari AR; Highland HM; Hodonsky CJ; McKnight B; Avery CL Hum Mol Genet; 2021 Jul; 30(15):1371-1383. PubMed ID: 33949650 [TBL] [Abstract][Full Text] [Related]
32. USAT: A Unified Score-Based Association Test for Multiple Phenotype-Genotype Analysis. Ray D; Pankow JS; Basu S Genet Epidemiol; 2016 Jan; 40(1):20-34. PubMed ID: 26638693 [TBL] [Abstract][Full Text] [Related]
33. Joint Analysis of Multiple Phenotypes in Association Studies based on Cross-Validation Prediction Error. Yang X; Zhang S; Sha Q Sci Rep; 2019 Jan; 9(1):1073. PubMed ID: 30705317 [TBL] [Abstract][Full Text] [Related]
34. Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes. Konigorski S; Yilmaz YE; Janke J; Bergmann MM; Boeing H; Pischon T Genet Epidemiol; 2020 Jan; 44(1):26-40. PubMed ID: 31732979 [TBL] [Abstract][Full Text] [Related]
35. An Adaptive Fisher's Combination Method for Joint Analysis of Multiple Phenotypes in Association Studies. Liang X; Wang Z; Sha Q; Zhang S Sci Rep; 2016 Oct; 6():34323. PubMed ID: 27694844 [TBL] [Abstract][Full Text] [Related]
36. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. Su YR; Di C; Bien S; Huang L; Dong X; Abecasis G; Berndt S; Bezieau S; Brenner H; Caan B; Casey G; Chang-Claude J; Chanock S; Chen S; Connolly C; Curtis K; Figueiredo J; Gala M; Gallinger S; Harrison T; Hoffmeister M; Hopper J; Huyghe JR; Jenkins M; Joshi A; Le Marchand L; Newcomb P; Nickerson D; Potter J; Schoen R; Slattery M; White E; Zanke B; Peters U; Hsu L Am J Hum Genet; 2018 May; 102(5):904-919. PubMed ID: 29727690 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide association studies with high-dimensional phenotypes. Marttinen P; Gillberg J; Havulinna A; Corander J; Kaski S Stat Appl Genet Mol Biol; 2013 Aug; 12(4):413-31. PubMed ID: 23759510 [TBL] [Abstract][Full Text] [Related]
38. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models. Sul JH; Bilow M; Yang WY; Kostem E; Furlotte N; He D; Eskin E PLoS Genet; 2016 Mar; 12(3):e1005849. PubMed ID: 26943367 [TBL] [Abstract][Full Text] [Related]
39. A hierarchical clustering method for dimension reduction in joint analysis of multiple phenotypes. Liang X; Sha Q; Rho Y; Zhang S Genet Epidemiol; 2018 Jun; 42(4):344-353. PubMed ID: 29682782 [TBL] [Abstract][Full Text] [Related]
40. Power Comparisons of Methods for Joint Association Analysis of Multiple Phenotypes. Zhu H; Zhang S; Sha Q Hum Hered; 2015; 80(3):144-52. PubMed ID: 27344597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]