BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28653420)

  • 1. Impact of endotracheal tube shortening on work of breathing in neonatal and pediatric in vitro lung models.
    Mohr R; Thomas J; Cannizzaro V; Weiss M; Schmidt AR
    Paediatr Anaesth; 2017 Sep; 27(9):942-948. PubMed ID: 28653420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Work of breathing for cuffed and uncuffed pediatric endotracheal tubes in an in vitro lung model setting.
    Thomas J; Weiss M; Cannizzaro V; Both CP; Schmidt AR
    Paediatr Anaesth; 2018 Sep; 28(9):780-787. PubMed ID: 30004614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.
    Miyake F; Suga R; Akiyama T; Namba F
    Paediatr Anaesth; 2018 May; 28(5):458-462. PubMed ID: 29633434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of pressure support in compensating for apparatus work.
    Bersten AD; Rutten AJ; Vedig AE
    Anaesth Intensive Care; 1993 Feb; 21(1):67-71. PubMed ID: 8447610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of inspiratory work of breathing between flow-triggered and pressure-triggered demand flow systems in rabbits.
    Nishimura M; Imanaka H; Yoshiya I; Kacmarek RM
    Crit Care Med; 1994 Jun; 22(6):1002-9. PubMed ID: 8205807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Breathing and Imposed Work During Pediatric Mechanical Ventilation: A Bench Study.
    van Dijk J; Blokpoel RGT; Koopman AA; Brandsema R; Newth CJL; Kneyber MCJ
    Pediatr Crit Care Med; 2020 Jul; 21(7):e449-e455. PubMed ID: 32427436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site of pressure measurement during spontaneous breathing with continuous positive airway pressure: effect on calculating imposed work of breathing.
    Banner MJ; Kirby RR; Blanch PB
    Crit Care Med; 1992 Apr; 20(4):528-33. PubMed ID: 1559368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced airway resistance and work of breathing during mechanical ventilation with an ultra-thin, two-stage polyurethane endotracheal tube (the Kolobow tube).
    Velarde CA; Short BL; Rivera O; Seale W; Howard R; Kolobow T
    Crit Care Med; 1997 Feb; 25(2):276-9. PubMed ID: 9034264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect on work of breathing of different continuous positive airway pressure devices evaluated in a premature neonatal lung model.
    Nikischin W; Petridis M; Noeske J; Spengler D; von Bismarck P
    Pediatr Crit Care Med; 2011 Nov; 12(6):e376-82. PubMed ID: 21499172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The influence of endotracheal tube size on the airway flow resistance and work in infants analyzed using a simulation technique].
    Shimizu Y; Ishida N; Hagiwara K; Azuma M; Nakano M
    Masui; 1989 Aug; 38(8):1030-5. PubMed ID: 2810696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of endotracheal tube size and ventilator settings on the mechanics of a test system during intermittent flow ventilation.
    Farstad T; Bratlid D
    Pediatr Pulmonol; 1991; 11(1):15-21. PubMed ID: 1923663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential inadequacy of automatic tube compensation to decrease inspiratory work load after at least 48 hours of endotracheal tube use in the clinical setting.
    Oto J; Imanaka H; Nakataki E; Ono R; Nishimura M
    Respir Care; 2012 May; 57(5):697-703. PubMed ID: 22153219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new endotracheal tube for infants--laboratory and clinical assessment: a preliminary study.
    Stankiewicz B; Darowski M; Glapiński J; Rawicz M; Michnikowski M; Guć M; Kuraszkiewicz B
    Paediatr Anaesth; 2013 May; 23(5):440-5. PubMed ID: 23445272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneously breathing lung model comparison of work of breathing between automatic tube compensation and pressure support.
    Fujino Y; Uchiyama A; Mashimo T; Nishimura M
    Respir Care; 2003 Jan; 48(1):38-45. PubMed ID: 12556260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.
    Ivanov VA
    Respir Care; 2016 Feb; 61(2):155-61. PubMed ID: 26577200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extra work of breathing through adult endotracheal tubes.
    Bolder PM; Healy TE; Bolder AR; Beatty PC; Kay B
    Anesth Analg; 1986 Aug; 65(8):853-9. PubMed ID: 3729022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of inner tube placement on resistance and work of breathing through tracheostomy tubes: a bench test.
    Carter A; Fletcher SJ; Tuffin R
    Anaesthesia; 2013 Mar; 68(3):276-82. PubMed ID: 23278349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imposed work of breathing during high-frequency oscillatory ventilation: a bench study.
    van Heerde M; van Genderingen HR; Leenhoven T; Roubik K; Plötz FB; Markhorst DG
    Crit Care; 2006 Feb; 10(1):R23. PubMed ID: 16469130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.
    Hentschel R; Buntzel J; Guttmann J; Schumann S
    Physiol Meas; 2011 Sep; 32(9):1439-51. PubMed ID: 21799238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction of compliance and resistance altered by endotracheal tube leaks.
    Nikischin W; Lange M
    Pediatr Crit Care Med; 2003 Jul; 4(3):344-52. PubMed ID: 12831418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.