These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 28653477)
21. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
22. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
24. Correlations between the minimum and mean apparent diffusion coefficient values of hepatocellular carcinoma and tumor grade. Li X; Zhang K; Shi Y; Wang F; Meng X J Magn Reson Imaging; 2016 Dec; 44(6):1442-1447. PubMed ID: 27228086 [TBL] [Abstract][Full Text] [Related]
25. Influence of temporal parameters of DCE-MRI on the quantification of heterogeneity in tumor vascularization. Crombé A; Saut O; Guigui J; Italiano A; Buy X; Kind M J Magn Reson Imaging; 2019 Dec; 50(6):1773-1788. PubMed ID: 30980697 [TBL] [Abstract][Full Text] [Related]
26. Soft-Tissue Sarcomas: Assessment of MRI Features Correlating with Histologic Grade and Patient Outcome. Crombé A; Marcellin PJ; Buy X; Stoeckle E; Brouste V; Italiano A; Le Loarer F; Kind M Radiology; 2019 Jun; 291(3):710-721. PubMed ID: 30964422 [TBL] [Abstract][Full Text] [Related]
27. T Crombé A; Périer C; Kind M; De Senneville BD; Le Loarer F; Italiano A; Buy X; Saut O J Magn Reson Imaging; 2019 Aug; 50(2):497-510. PubMed ID: 30569552 [TBL] [Abstract][Full Text] [Related]
28. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
29. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. Liu L; Liu Y; Xu L; Li Z; Lv H; Dong N; Li W; Yang Z; Wang Z; Jin E J Magn Reson Imaging; 2017 Jun; 45(6):1798-1808. PubMed ID: 27654307 [TBL] [Abstract][Full Text] [Related]
30. Tumor grade in soft-tissue sarcoma: Prediction with magnetic resonance imaging texture analysis. Hong JH; Jee WH; Jung CK; Chung YG Medicine (Baltimore); 2020 Jul; 99(27):e20880. PubMed ID: 32629676 [TBL] [Abstract][Full Text] [Related]
32. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Peeken JC; Bernhofer M; Spraker MB; Pfeiffer D; Devecka M; Thamer A; Shouman MA; Ott A; Nüsslin F; Mayr NA; Rost B; Nyflot MJ; Combs SE Radiother Oncol; 2019 Jun; 135():187-196. PubMed ID: 30961895 [TBL] [Abstract][Full Text] [Related]
33. Preliminary utilization of radiomics in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic efficacy of MRI features and radiomic features. Xie H; Hu J; Zhang X; Ma S; Liu Y; Wang X Eur J Radiol; 2019 Jun; 115():39-45. PubMed ID: 31084757 [TBL] [Abstract][Full Text] [Related]
34. Neuroendocrine liver metastases: Value of apparent diffusion coefficient and enhancement ratios for characterization of histopathologic grade. Besa C; Ward S; Cui Y; Jajamovich G; Kim M; Taouli B J Magn Reson Imaging; 2016 Dec; 44(6):1432-1441. PubMed ID: 27227756 [TBL] [Abstract][Full Text] [Related]
35. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Server A; Kulle B; Gadmar ØB; Josefsen R; Kumar T; Nakstad PH Eur J Radiol; 2011 Nov; 80(2):462-70. PubMed ID: 20708868 [TBL] [Abstract][Full Text] [Related]
36. A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Shao S; Zheng N; Mao N; Xue X; Cui J; Gao P; Wang B Clin Radiol; 2021 Jun; 76(6):472.e11-472.e18. PubMed ID: 33752882 [TBL] [Abstract][Full Text] [Related]
37. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. Shen N; Zhao L; Jiang J; Jiang R; Su C; Zhang S; Tang X; Zhu W J Magn Reson Imaging; 2016 Sep; 44(3):620-32. PubMed ID: 26880230 [TBL] [Abstract][Full Text] [Related]
38. Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models. Wang F; Wang Y; Zhou Y; Liu C; Xie L; Zhou Z; Liang D; Shen Y; Yao Z; Liu J J Magn Reson Imaging; 2017 Dec; 46(6):1797-1809. PubMed ID: 28379611 [TBL] [Abstract][Full Text] [Related]
39. Quantified analysis of histological components and architectural patterns of gleason grades in apparent diffusion coefficient restricted areas upon diffusion weighted MRI for peripheral or transition zone cancer locations. Helfrich O; Puech P; Betrouni N; Pinçon C; Ouzzane A; Rizk J; Marcq G; Randazzo M; Durand M; Lakroum S; Leroy X; Villers A J Magn Reson Imaging; 2017 Dec; 46(6):1786-1796. PubMed ID: 28383776 [TBL] [Abstract][Full Text] [Related]
40. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging. Bai Y; Lin Y; Tian J; Shi D; Cheng J; Haacke EM; Hong X; Ma B; Zhou J; Wang M Radiology; 2016 Feb; 278(2):496-504. PubMed ID: 26230975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]